SUPPORT SYSTEMS FOR ROBOTICS: PRINCIPLES, ALGORITHMS AND DEVELOPMENT PROSPECTS


Abstract views: 6 / PDF downloads: 2

Authors

  • Svitlana SOTNIK Kharkiv National University of Radio Electronics

DOI:

https://doi.org/10.5281/zenodo.18088674

Keywords:

robotics, support systems for solutions, piece intelligence, machines, intelligent algorithms

Abstract

The article explores the current state and prospects for the development of decision support systems in robotics. It examines the fundamental principles of building such systems, in particular hierarchy, information integration, adaptability, and others. The main algorithmic approaches are analyzed, including Q-learning, neural networks, Markov processes, genetic algorithms, fuzzy logic, and Bayesian networks. Mathematical models and examples of practical applications of each algorithm are provided. A comparative analysis of the effectiveness of various algorithmic solutions is conducted based on the criteria of adaptability, speed, and implementation complexity. The advantages and limitations of each approach are identified in the context of specific robotics tasks. Prospective directions for the development of DSS are outlined, focusing on integration with modern deep learning technologies, cloud computing, and quantum systems. The research has theoretical and practical value for the development and improvement of autonomous robotic systems in various fields of application, from industry to medicine. The results of the work can be used in the design of new and modernization of existing decision support systems in robotics.

References

Nevludov I. S. Cloud giants: AWS, Azure and GCP. I. S. Nevludov, et al. 2023 2nd International Conference on Innovative Solutions in Software Engineering Ivano-Frankivsk, Ukraine, November 29-30, 2023. pp. 17-23.

Sotnik S. V. Safe cobots in development of industrial robotics: дис. S. V. Sotnik, et al. The 8th International scientific and practical conference “European scientific congress” (September 4-6, 2023). 2023. pp. 80-84.

Lykho T. A. Pattern recognition and computer vision technologies in decision support systems of robotic systems. T. A. Lykho, et al. Proceedings of the XVII International scientific and practical conference «Information technologies and automation – 2024». 2024. рр. 645-648

Zarubin I. Basic principles of building aerial robots. I. Zarubin, et al. Manufacturing & Mechatronic Systems 2024: Proceedings of VIII st International Conference, Kharkiv, October 25-26. 2024. pp. 32-36

Andreiev А. Comparative analysis of robotics platform: Webots, Coppeliasim and Gazebo. А. Andreiev, et al. Suchasni problemy i dosiahnennia v haluzi radiotekhniky, telekomunikatsii ta informatsiinykh tekhnolohii: Tezy dopovidei KhII Mizhnarodnoi naukovo-praktychnoi konferentsii (10-12 hrudnia 2024 r., m. Zaporizhzhia). [Elektronnyi resurs] /Elektron. dani. – Zaporizhzhia: NU «Zaporizka politekhnika». 2024. рр. 96-100

Sotnik S. V. Modeling design of mobile robotic platform. S. V. Sotnik, I. Zarubin. Stan, dosiahnennia ta perspektyvy informatsiinykh system i tekhnolohii / Materialy XXIV Vseukrainskoi naukovo-tekhnichnoi konferentsii molodykh vchenykh, aspirantiv ta studentiv. 2024. рр. 481-482

Sotnik S. Optimization of work: in-depth look at Kanban, Scrum and Lean. S. Sotnik, M. Omarov, A. Frolov, B.A.A. AL-Badani. Journal of natural sciences and technologies, 2024. – 3(1). pp. 290-301

Sotnik S. Key Directions for Development of Modern Expert Systems. S. Sotnik, Z. Deineko, V. Lyashenko. International Journal of Engineering and Information Systems. 2022. Vol. 6, Issue 5. рр. 4-10

Zhai Z. Decision support systems for agriculture 4.0: Survey and challenges. Z. Zhai, et al. Computers and Electronics in Agriculture. 2020. 170. рр. 105256

Kumar S. Computer-vision-based decision support in surgical robotics. S. Kumar P. Singhal, V. N. Krovi. IEEE Design & Test. 2015. 32.5. рр. 89-97

Gregory J. M. Taxonomy of a decision support system for adaptive experimental design in field robotics. J. M. Gregory, et al. arXiv preprint arXiv:2210.08397. 2022. рр. 1-10

Yanti D. Integrating Simple Additive Weighting in Robotics Decision Support Systems. D. Yanti, et al. Robot Intelligence Technology and Applications 8. RiTA 2023. Lecture Notes in Networks and Systems, vol 1132. Springer, Cham. 2024. рр. 336-346

Mota T. Integrated commonsense reasoning and deep learning for transparent decision making in robotics. T. Mota, M. Sridharan, A. Leonardis. SN Computer Science. 2021. 2(242). рр. 1-18

Agostini A. Efficient interactive decision-making framework for robotic applications. A. Agostini, C. Torras, F. Wörgötter. Artificial Intelligence. 2017. 247. рр.187-212

Imran R. A multi-criteria group decision-making approach for robot selection using interval-valued intuitionistic fuzzy information and Aczel-Alsina Bonferroni means. R. Imran, et al. Spectrum of Decision Making and Applications. 2024. 1.1. рр. 1-32

Yang S. Foundation models for decision making: Problems, methods, and opportunities. S. Yang, et al. arXiv preprint arXiv:2303.04129. 2023. рр. 1-32

Kochenderfer M. J. Algorithms for decision making. M. J. Kochenderfer, T. A. Wheeler, K. H. Wray. MIT press, 2022. 700 р.

Published

2025-12-31

How to Cite

SOTNIK, S. (2025). SUPPORT SYSTEMS FOR ROBOTICS: PRINCIPLES, ALGORITHMS AND DEVELOPMENT PROSPECTS . Journal of Natural Sciences and Technologies, 4(2), 419–430. https://doi.org/10.5281/zenodo.18088674

Most read articles by the same author(s)