SYNTHESES AND STRUCTURAL ANALYSES OF HETERONUCLEAR HEXACYANOMETALLATE(III) COMPLEXES WITH 4-(2-AMINOETHYL)PYRIDINE
Abstract views: 114 / PDF downloads: 61
DOI:
https://doi.org/10.5281/zenodo.10349901Keywords:
Hexacyanoferrate(III), Hexacyanocobaltate(III), 4-(2-aminoethyl)pyridine, Coordination polymerAbstract
In this study, the complexes, given with the formula (NH4)[Cd(µ-4aepy)2Fe(µ-CN)2(CN)4]n and (NH4)[Cd(µ-4aepy)2Co(µ-CN)2(CN)4]n,, obtained by using cadmium(II), 4-(2-aminoethyl)pyridine (4aepy) and hexacyanoferrate(III) or hexacyanocobaltate(III) were synthesized as powder. Structural characterizations of the obtained compounds were investigated by vibration (FT-IR and Raman) spectroscopy, elemental, thermal and powder-XRD techniques. Vibration spectra of the complexes were recorded between 4000-225 cm-1 and were confirmed by the results of thermal and elemental analyses. The structural properties of the complexes were investigated by considering the characteristic bands of the ligands from the vibration spectra. Additionally, vibration spectra of the complexes were observed two different ν(CN) absorption bands which act as bridge and terminal. The spectral data show that the characteristic bands of 4aepy were shifted to lower and high frequencies. These shifts arise due to bounding metal and coupling of metal-ligand vibration modes. Thermal behaviors of the complexes are investigated between the temperature ranges of 30-1000 °C in static air atmosphere.
References
MacGillivray LR, Lukehart CM, Metal-organic framework materials, 1st ed. John Wiley & Sons, 2014.
Zhou HC, Long JR, Yaghi OM, Introduction to metal-organic frameworks, in, ACS Public. 2012, 673-674.
Kirchon A, Feng L, Drake HF, Joseph EA, Zhou HC, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev. 2018; 47:8611-8638.
Yin Z, Wan S, Yang J, Kurmoo M, Zeng MH, Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions, Coord. Chem. Rev. 2019; 378:500-512.
Zheng XD, Lu TB, Constructions of helical coordination compounds, Cryst. Eng. Comm. 2012; 12:324-336.
Zhang CX, Lippard SJ, New metal complexes as potential therapeutics, Curr. Opin. Chem. Biol. 2003; 7:481-489.
Martell AE, Hancock RD, Metal complexes in aqueous solutions, 1st ed, Springer Science & Business Media, 2013.
Orgel L., Spectra of transition‐metal complexes, The Journal of Chemical Physics, 1955; 23:1004-1014.
Liu HK, Sadler PJ, Metal complexes as DNA intercalators, Acc. Chem. Res. 2011; 44:349-359.
Rafique S, Idrees M, Nasim A, Akbar H, Athar A, Transition metal complexes as potential therapeutic agents, Biotech. Mol. Bio. Rev. 2010; 5:38-45.
Plecnik CE, Liu S, Shore SG, Lanthanide-transition-metal complexes: from ion pairs to extended arrays, Acc Chem. Res. 2003; 36:499-508.
Kong XJ, Ren YP, Chen WX, Long LS, Zheng Z, Huang RB, Zheng LS, A Four‐Shell, Nesting Doll‐like 3d-4f Cluster Containing 108 Metal Ions, Angew. Chem. 2008; 120:2432-2435.
Kong XJ, Ren YP, Long, Zheng Z, Huang RB, Zheng LS, A keplerate magnetic cluster featuring an icosidodecahedron of Ni(II) ions encapsulating a dodecahedron of La(III) ions, J. Am. Chem. Soc. 2007; 129:7016-7017.
Qu Y, Wang C, Wu Y, Wu H, Han X, Xu J, Xia X, Construction of df heteronuclear complexes with open-chain ether Schiff base ligand: Regulation effects of Zn(II) and Cd(II) on structures and luminescence properties, J. Lumin. 2020; 226:117437.
Blais C, Daiguebonne C, Suffren Y, Bernot K, Calvez G, Le Pollès L, Roiland C, Freslon S, Guillou O, Investigation of intermetallic energy transfers in lanthanide coordination polymers molecular alloys: case study of trimesate-based compounds, Inorg. Chem. 2022; 61:11897-11915.
Zheng K, Liu ZQ, Huang Y, Chen F, Zeng CH, Zhong S, Seig Weng NG, Highly luminescent Ln-MOFs based on 1,3-adamantanediacetic acid as bifunctional sensor, Sens. Actuators, B, 2018; 257:705-713.
Feng X, Guo N, Chen H, Wang H, Yue L, Chen X, S.W. Seig Weng NG, Ma L, Wang L, A series of anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence and magnetic properties, Dalton Trans. 2017; 46:14192-14200.
Liang H, Jiao X, Li C, Chen D, Flexible self-supported metal–organic framework mats with exceptionally high porosity for enhanced separation and catalysis, J. Mater. Chem. 2018; 6:334-341.
Hiraide S, Tanaka H, Ishikawa N, Miyahara MT, Intrinsic thermal management capabilities of flexible metal–organic frameworks for carbon dioxide separation and capture, ACS App. Mat. inter.2017; 9:41066-41077.
Sharpe A.G., Chemistry of cyano complexes of the transition metals, 2nd ed. Academic Press, 1976.
Golub AM, Köhler H, Chemie der pseudohalogenide, VEB Deutscher Verlag der Wissenschaften, 1979.
Ludi A, Berliner Blau, Chem. unserer Zeit, 1988; 22:123-127.
Hofmann K, Küspert F, Verbindungen von kohlenwasserstoffen mit metallsalzen, Z. Anorg. Allg. Chem. 1897; 15:204-207.
Fritz M, Rieger D, Bär E, Beck G, Fuchs J, Holzmann G, Fehlhammer WP, Octahedro octahedra and tetrahedra. II. Tetra-to heptanuclear carbonyl (cyano) chromato,-molybdato and-tungstato complexes of 3d metals, Inorg. Chim. Acta, 1992; 198:513-526.
P. Braunstein, Polymetallic Activation, Platinum Met. Rev. 1991; 35:10-16.
Scott MJ, Holm R, Molecular Assemblies Containing Linear and Bent [FeIII-CN-CuII] Bridge Units: Synthesis, Structures, and Relevance to Cyanide-Inhibited Heme-Copper Oxidases, J. Am. Chem. Soc. 1994; 116:11357-11367.
Espallargas GM, Coronado E, Magnetic functionalities in MOFs: from the framework to the pore, Chem. Soc. Rev. 2018; 47:533-557.
Henkel H, Babel D, Die Kettenstruktur der hydratisierten Tetramethylammoniummangan(II)-hexacyanometallate(III) NMe4MnFe(CN)6•8H2O und NMe4Mn2(CN)6•8H2O/ The Chain Structure of the Hydrated Tetramethylammoniummanganese(II)-hexacyanometallates(III) NMe4MnFe(CN)6•8H2O und NMe4Mn2(CN)6•8H2O, Z. Naturforsch., A: Phys. Sci. B, 1984; 39:880-886.
Hill JA, Thompson AL, Goodwin AL, Dicyanometallates as model extended frameworks, J. Am. Chem. Soc. 2016; 138:5886-5896.
Kürkçüoğlu GS, Sayın E, Şahin O, Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M= Zn (II) and Cd (II)), J. Mol. Struct. 2015; 1101:82-90.
Kürkçüoğlu GS, Yeşilel OZ, Sayın E, Enönlü E, Şahin O, Synthesis and structural analysis of heteronuclear hexacyanochromate(III) complex with tris(2-aminoethyl)amine),[Cd(tren)(Htren)][Cr(CN)6]⋅2H2O, J. Mol. Struct. 2020; 1219:128462.
Yin Z, Zhou YL, Zeng MH, Kurmoo M, The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions, Dalton Trans. 2015; 44:5258-5275.
Kürkçüoğlu GS, Yeşilel OZ, Kekeç S, Şahin O, Synthesis, crystal structure and spectroscopic investigations of heteronuclear Co(III)/Cu(II), Co(III)/Cd(II) and Fe(III)/Cd(II) 3D coordination polymers with 4-(2-aminoethyl)pyridine, J. Mol. Struct. 2023; 1274:134540.
Niven ML, Percy GC, The infrared spectra (3500-140 cm-1) of the 2,2'-bipyridine, 2-aminomethylpyridine and ethylenediamine adducts and the sodium tris-compounds of cobalt(II), nickel(II) and zinc(II) acetylacetonates, Trans. Met. Chem. 1978; 3:267-271.
Rastogi D, Sharma K, Stereochemical features of some nickel(II) and cobalt(II) complexes of amino ligand 2-(2-aminoethyl)pyridine VII, J. Inorg. Nuclear Chem. 1974; 36:2219-2228.
Socrates G, Infrared and Raman characteristic group frequencies: tables and charts, 3rd ed. John Wiley & Sons, 2004.
Vidya S, Ravikumar C, Hubert Joe I, Kumaradhas P, Devipriya B, Raju K, Vibrational spectra and structural studies of nonlinear optical crystal ammonium D, L‐tartrate: a density functional theoretical approach, J. Raman Spec. 2011; 42:676-684.
Karaağaç D, Kürkçüoğlu GS, Şenyel M, Hökelek T, Syntheses, crystal structures, spectroscopic properties and thermal decompositions of one dimensional coordination polymers with 4-(2-aminoethyl)pyridine and cyanide ligands: [M(μ-4aepy)2(H2O)2][M′(CN)4](M= Cu or Zn, M' = Ni or Pd), J. Mol. Struct. 2019; 1176:641-649.
Nakamoto K, Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry, 6th ed. John Wiley & Sons, 2009.
Krawczyk MK, Bikas R, Krawczyk MS, Lis T, Rhenium(I)-copper(I) carbonyl cyanide clusters, J. Organomet. Chem. 2020; 908:121065.
Krawczyk MK, Bikas R, Krawczyk MS, Lis T, On Rhenium(I)-silver(I) cyanide porous macrocyclic clusters, Cryst. Eng. Comm. 2017; 19:3138-3144.
S. Tanase, J. Reedijk, Chemistry and magnetism of cyanido-bridged d–f assemblies, Coord. Chem. Rev.2006; 250:2501-2510.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Natural Sciences and Technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.