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ABSTRACT 
In this study, the dynamic path planning capabilities of mobile robots in indoor environments were investigated. The focus 
was on examining how newly added obstacles to an initially static map affect the robot's navigation behavior. To achieve 
this, the ROS2 Nav2 package along with the DWB Planner module was utilized. The Gazebo simulation environment served 
as the testing ground, allowing the robot to use LIDAR data to detect obstacles in real-time and navigate safely to the target 
without collisions. Throughout the study, three primary scenarios were established: the first involved navigating to the target 
on an obstacle-free map as a reference; the second examined the impact of manually added static obstacles on the robot's path 
planning; and the third tested how adjusting costmap parameters enabled the robot to pass closer to obstacles. Experimental 
results revealed that the ROS2 Nav2 framework could dynamically adapt to environmental changes, allowing the robot to re-
plan its path as needed. Moreover, when the costmap parameters were reduced, the robot managed to pass closer to obstacles 
in a safe and controlled manner, which contributed to a decrease in both the total path length and the target arrival time. 
These findings highlight the direct impact of dynamic obstacles and costmap configurations on the robot's path planning 
performance. Overall, the ROS2 Nav2 framework has proven to be a robust and flexible solution for safe and efficient 
navigation in indoor environments. 
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INTRODUCTION 

The ability of mobile robots to operate safely in shared environments with humans has become a rapidly 
evolving field of research. In such settings, robots are expected to navigate safely on a known map and also 
detect and avoid unexpected obstacles that may suddenly appear. 

In this thesis study, a path planning system was developed on the ROS 2 platform to enable a mobile 
robot, equipped solely with a LiDAR sensor, to reach a target position. The LiDAR sensor scans the 
environment 360 degrees to detect both static and dynamic obstacles. However, this detection alone is not 
sufficient. In order to determine the robot's position accurately, information from various sensors must be fused 
and evaluated together. 

In this context, sensor fusion plays a critical role. In addition to LiDAR data, information from the IMU 
(accelerometer, gyroscope, magnetometer) and motor encoders is integrated to estimate the robot’s position and 
direction of movement more accurately. This fusion process allows the robot to make safer and more flexible 
decisions in response to environmental changes. 

The Nav2 package, which is part of the modular structure of ROS 2, was used as the navigation 
framework, and the DWB (Dynamic Window Approach) algorithm was selected as the local planner. The 
developed method ensures that the robot navigates with environmental awareness, especially in narrow indoor 
spaces with human presence. In this way, the study contributes to the development of low-cost and reliable 
autonomous navigation solutions. 
 

https://dergipark.org.tr/tr/pub/@ktutuncu
https://dergipark.org.tr/tr/pub/@cem-berkay-karaca
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2. LITERATURE REVIEW 

Macenski, S., Martín, F., White, R., & Clavero, J. G. (2020). The Marathon 2: A Navigation System. In 
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2718–2725). IEEE. 

This study introduces Marathon 2, a ROS 2-based navigation system. The system includes features such 
as dynamic obstacle avoidance, costmap layers, and SLAM integration. The paper explains in detail how ROS 2 
utilizes navigation stacks and how costmap layers are updated in dynamic environments. Additionally, it 
investigates how LiDAR data is integrated into costmap layers and used in dynamic path planning. This work 
serves as an important reference for researchers developing dynamic path planning and obstacle avoidance 
strategies for ROS 2-based mobile robots. 

Hess, W., Kohler, D., Rapp, H., & Andor, D. (2016). Real-time loop closure in 2D LIDAR SLAM. In 
2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1271–1278). IEEE. 

This paper investigates real-time loop closure techniques in 2D LiDAR-based SLAM systems. It offers 
significant insights into how LiDAR data can be used for costmap-based path planning in ROS 2. The study 
proposes new algorithms to improve the performance of SLAM and path planning systems, especially in 
dynamic environments. It also details how LiDAR-based SLAM systems can be integrated with ROS 2 and how 
these systems contribute to the costmap layers. 

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE 
Robotics & Automation Magazine, 4(1), 23–33. 

This article explains the Dynamic Window Approach (DWA) for collision avoidance. DWA is an 
effective method that enables mobile robots to navigate safely in dynamic environments. The paper provides 
important information on how DWA can be used with costmap layers in ROS 2 and discusses in detail how 
LiDAR data can be integrated into the dynamic window approach. 

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques for grid mapping with Rao-
Blackwellized particle filters. IEEE Transactions on Robotics, 23(1), 34–46. 

This study addresses the processing of LiDAR data using grid mapping and Rao-Blackwellized particle 
filters. The paper explains how these methods, commonly used in SLAM systems, can be integrated with ROS 2 
and contribute to costmap layers. It also proposes new techniques for grid mapping and path planning in 
dynamic environments. 

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., … & Ng, A. Y. (2009). ROS: an 
open-source Robot Operating System. In ICRA Workshop on Open Source Software (Vol. 3, No. 3.2, p. 5). 

This paper presents the fundamentals of the Robot Operating System (ROS) and ROS 2. It examines in 
detail features such as navigation stacks, costmap layers, and SLAM integration. The study offers key insights 
into how ROS 2 can be used to develop dynamic path planning and obstacle avoidance strategies for mobile 
robots. 

Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot 
simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vol. 3, pp. 
2149–2154). IEEE. 

This article introduces the Gazebo simulator, which can be integrated with ROS 2. Gazebo is a 
significant tool used for simulating LiDAR-based dynamic path planning and SLAM systems. The paper details 
how Gazebo can be used with ROS 2 and how costmap layers can be tested within the simulation environment. 

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press. 
This book provides a comprehensive overview of probabilistic robotics, including LiDAR-based 

perception, mapping, and path planning techniques. It presents foundational knowledge for SLAM and dynamic 
path planning in ROS 2-based systems. The book also discusses how costmap layers can be updated using 
probabilistic methods in detail. 

Borenstein, J., & Koren, Y. (1991). The vector field histogram—fast obstacle avoidance for mobile 
robots. IEEE Transactions on Robotics and Automation, 7(3), 278–288. 

This paper explains the use of the Vector Field Histogram (VFH) method for fast obstacle avoidance. 
VFH is an effective technique for LiDAR-based dynamic path planning. The study provides important 
information on how VFH can be used with costmap layers in ROS 2. 

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general 
framework for graph optimization. In 2011 IEEE International Conference on Robotics and Automation (ICRA) 
(pp. 3607–3613). IEEE. 

This work presents g2o, a general framework for solving graph-based optimization problems, 
particularly used in SLAM and dynamic path planning. The paper describes how g2o can be applied in ROS 2-
based systems and how it contributes to costmap layer integration. 

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010). The Office Marathon: 
Robust navigation in an indoor Office environment. In 2010 IEEE International Conference on Robotics and 
Automation (ICRA) (pp. 300–307). IEEE. 
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This article introduces the Office Marathon, a ROS-based navigation system. The system includes 
features such as dynamic obstacle avoidance, costmap layers, and SLAM integration. The study provides 
valuable insights into how similar systems can be developed using ROS 2. 
 

3. MATERIALS AND METHODS 

3.1 Planning Algorithms 

This section discusses various algorithms developed to address the motion planning problem. Our goal 
is to identify where the proposed solution fits within existing planning methods and to highlight the core 
principles that shape these approaches. The system presented in this study adopts a path planning approach that 
is responsive to dynamic obstacles, directly generates trajectories, and leverages both geometric and heuristic 
methods. By examining the performance criteria, we can determine the type of implementation—whether it is 
trajectory-based or path-based. Through classification, we assess the structure, speed, and suitability of the 
algorithm. 

3.1.1 Criteria 

Several fundamental criteria are used to classify planning algorithms. These criteria help us understand 
the algorithm’s output type, operational principles, and mathematical foundations. The main criteria are as 
follows: 

• Output Type: 
The output of the algorithm may be a path, a sequence of motions (trajectory), or a symbolic 
representation. 
While a path defines only the positions the robot should pass through, a trajectory also specifies the 
velocity, timing, and method for reaching those positions. 
In this thesis study, a traditional path is not used; instead, time-based trajectories are generated in real-
time according to environmental conditions. 
• Set-based Algorithms: 

These algorithms typically divide the workspace into segments. However, this division only creates 
the map; an additional algorithm is needed to determine the appropriate movement afterward. 

• Solve-based Algorithms: 
These algorithms directly produce a feasible motion sequence from the starting point to the goal. 
The DWB local planner is an example of a solve-based algorithm, which generates the most suitable 
trajectory in real time to reach the goal. 

• Spatio-Temporal Characteristics: 
This refers to how the algorithm incorporates time and space during planning. 
• Predictive Algorithms: 

These generate a set of motion options with a forward-looking approach and determine the most 
optimal one over a longer time horizon. Although such methods typically offer better performance, 
they are computationally more expensive. 

• Reactive Algorithms: 
These make fast decisions based on the current situation over a short time horizon. While 
computationally less demanding, their predictive ability is limited. In this thesis, reactive algorithms 
are used to generate trajectories. 

• Mathematical Approach: 
This refers to the mathematical methods on which the algorithm is based when solving the planning 
problem. 
• Heuristic Methods: 

Rely on experience and rule-based decision-making. 
• Geometric Methods: 

Use spatial data and geometry to generate solutions. 
• Biomimetic Methods: 

Mimic the behavior of natural systems. 
• Logical Approaches: 

Use predefined rules and logical relations. 

These criteria help in comparing different algorithms and determining which is more suitable under specific 
circumstances. The criteria applied in this thesis are selected accordingly. 
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Table 3.1. Fundamental Criteria Table 
Criterion Selected Type Description 
Output Solve-algorithm Generates trajectory 
Spatio-Temporal Reactive Instant environmental reaction 
Mathematical Basis Geometric + Heuristic Uses methods such as costmap, prediction, velocity 

 
3.1.2 Classification (Taxonomy) 

In this section, planning algorithms are divided into six main categories using the criteria described 
above. 
A. Space Configuration Algorithms 

These algorithms segment the workspace (W) over time. They generally operate in three main steps: 

1. Sampling / Discretization 
The workspace is divided into points (or cells), either randomly or in a specific pattern. 

2. Elimination of Colliding / Invalid Elements 
Points that intersect with obstacles or are kinematically infeasible are discarded. 

3. Path Finding 
An optimal path is determined among the remaining points, forming a sequence that the robot will 
follow. 

Within this category, the following methods are commonly used: 

• Sampling-Based Methods: 
For example, the PRM (Probabilistic Roadmap Method) algorithm selects random points from the 
workspace and constructs a graph by connecting them while taking obstacles into account. 

• Connected Cells Method: 
The workspace is geometrically divided into cells, and connections are made between these cells to find 
a path. Examples include DWA (Dynamic Window Approach) and Voronoi-based methods. 

• Lattice Representation: 
Using motion primitives, each possible movement is linked to the next, forming a reachability graph. 
This method is particularly suitable for structured environments like highways. 

           

a) Sampling-Based Decomposition 
 

 

b) Connected Cells Decomposition 

 

c) Lattice Representation  

Figure 3.1. Space Configuration Types 
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B. Pathfinding Algorithms 
These algorithms aim to find the shortest path on a previously constructed graph or structure. The most 

common examples include: 

• Dijkstra: 
Finds the shortest path between two points. 

• A* : 
A faster version of Dijkstra’s algorithm that reduces computation time by exploring fewer nodes. 

• RRT and RRT* (Rapidly-exploring Random Tree): 
These methods randomly sample points from the workspace and connect them to form a path, which is 
especially useful in unknown or complex environments. 
RRT* is an improved version of RRT and converges toward a near-optimal solution. 

C. Attractive and Repulsive Force-Based Methods 
These methods balance attractive forces that pull the robot toward the goal and repulsive forces that 

push it away from obstacles. 

• Artificial Potential Field (APF): 
Applies attractive forces toward the target and repulsive forces away from obstacles. The robot follows 
the path of lowest energy within the potential field. 

• Elastic Band: 
An initially generated free path is treated like an elastic band that reshapes itself to maintain a safe 
distance from obstacles. 

D. Artificial Intelligence and Learning-Based Methods 
These methods enable the algorithm to learn through interaction with the environment. 

• Logical Approaches: 
Include decision trees, finite state machines (FSM), and Bayesian networks. 

• Heuristic Methods: 
Use rule-based strategies derived from experience. 

• Fuzzy Logic: 
Operates with data containing uncertainty and imprecision. 

• Artificial Neural Networks (ANNs, CNNs) and Reinforcement Learning: 
Enable adaptation to environmental conditions by training on multidimensional data. 

 

E. Numerical Optimization 
These methods aim to minimize a cost function under a set of constraints. For example: 

• Linear Programming (LP), Quadratic Programming (QP), Model Predictive Control (MPC), and 
Dynamic Programming (DP): 
These techniques seek mathematically optimal solutions within well-defined constraint sets. 

F. Human-like Methods 
These approaches attempt to imitate human decision-making processes. In complex situations, solutions 

are generated using human-like strategies (risk estimation, taxonomic models). Although a DWB-based method 
was preferred in this thesis, sampling-based algorithms such as RRT* offer more suitable options in unknown 
environments that require exploration; MPC and Lattice methods are more appropriate for scenarios such as 
highways that require precise maneuvers; and AI-based approaches provide better options in social or dynamic 
environments. 
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Table 3.2 Classification Table 

Category Used? Explanation 
1. Space Configuration Yes The DWB algorithm divides the workspace into a grid/costmap. 
- Sampling-Based 
Decomposition 

No Sampling algorithms such as PRM, RRT, and RRT* were not 
used. 

- Connected Cells 
Decomposition 

Yes DWB makes decisions based on a cell-based connectivity 
structure. 

- Lattice Representation No Lattice-based motion primitives were not used. 
2. Pathfinding Algorithms 
(Dijkstra, A*) 

No Graph-based pathfinding algorithms were not implemented in 
this thesis. 

3. Attractive / Repulsive 
Forces 

No Methods such as Artificial Potential Field and Elastic Band 
were not used. 

4. Parametric Curves No Curve-based methods (e.g., Spline, Bezier) were not preferred. 
5. Artificial Intelligence 
(AI) Methods 

No AI techniques such as Fuzzy Logic, ANN, SVM, and RL were 
not used. 

6. Numerical Optimization Yes The TEB algorithm fits this category as it optimizes time- and 
distance-based cost functions. 

 
3.2 ROS Kavramları 

ROS (Robot Operating System) is an open-source software framework developed for robots. It is not a real 
operating system (such as Windows or Linux), but it runs on top of them to provide some robot-specific services. 
These services include: 

• Hardware abstraction (facilitating communication with robot sensors and motors), 
• Controlling devices (e.g., operating motors), 
• Communication between different software components within the robot, 
• Organizing software packages. 

Thanks to its open-source architecture, the ROS platform offers modular and flexible solutions for real-time 
control systems (Quigley et al., 2009). The core messaging structures and node management of ROS are 
essential concepts that must be understood for real-time applications (O’Kane, 2013). 

ROS (Robot Operating System) serves as an infrastructure that functions like the brain of the robot. Although 
ROS1 was used for many years, with the release of ROS2, it has become a faster, more secure, and modular 
system. 

Table 3.4: Comparison of ROS1 and ROS2 
Feature ROS1 ROS2 
Communication Infrastructure TCPROS (unidirectional, low 

security) 
DDS (real-time, secure, 
bidirectional) 

Real-Time Support No Yes 
Platform Support Limited (mostly Linux) Wide (Linux, Windows, macOS) 
Multi-Robot Support Weak Advanced 
Lifecycle Management No Yes (Lifecycle Nodes) 
Industrial Application Compatibility Low High 

 

ROS2 is particularly preferred in systems operating in dynamic environments, such as mobile robots. Thanks to 
its real-time and security features, it provides more stable and reliable results, especially in indoor applications. 

3.2.1 Core Building Blocks of ROS 

1. Nodes: 
Every small program running within ROS is called a node. For example, one node may process camera 
images, while another controls the motors. 

2. Messages: 
Nodes exchange data with each other by sending messages. These messages can contain simple data 
like numbers or text, or more complex information such as the robot's position. 
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3. Topics: 
These are communication channels through which messages flow. One node acts as a "publisher" and 
sends messages to a topic, while others act as "subscribers" and receive those messages. (The publish–
subscribe model) 

4. Services: 
Used when one node requests information from another. For example, a node may say "send position 
data", and the other responds. The process is completed, and the connection closes. 

5. Actions: 
Similar to services but designed for long-running tasks. For instance, if it takes time for a robot to reach 
a target location, actions allow feedback to be received throughout the process (e.g., progress updates). 

 

Figure 3.2. Information flow between the core components of ROS. 

The ROS software is organized into packages. Each package contains: 

• Nodes, 
• Configuration files, 
• Libraries, and other components. 

These packages can be grouped into higher-level structures called metapackages, which combine 
packages with similar functions. For example, all components responsible for robot navigation can be grouped 
under a metapackage called Navigation Stack. 

In the ROS system, a special node called the Master Node manages all communications. It coordinates 
how all components in the system interact with each other. 
 

3.2.2 Navigation in ROS2 (Nav2) 
IMU and odometry data obtained from the robot's own sensors serve as the primary inputs for position 

estimation. However, precise position information is calculated by the AMCL algorithm within ROS 2. In other 
words, the hardware data is processed by the software. Localization is performed using the AMCL (Monte Carlo 
Localization) method. Sensor data and position information are ultimately transmitted to the robot as a cmd_vel 
command. 

The navigation packages of ROS, Nav1 and Nav2, enable mobile robots to find the safest and most 
efficient path to their target. While Nav1 is compatible with ROS1, Nav2 operates within the ROS2 framework 
and offers a much more flexible structure. 

Table 3.5: Comparison of Nav1 and Nav2 
Feature Nav1 (ROS1) Nav2 (ROS2) 
Architectural Structure Fixed structure in a single node Modular structure (servers and behavior 

trees) 
Planner Support Fixed (usually DWA) Extensible (DWB, TEB, etc.) 
Robot Type Support Limited (differential, omni) Broad (Ackermann, differential, omni) 
Map Representation 2D Costmap 2D, 3D, SLAM-compatible 
Parameter Management Static Dynamic (lifecycle and parameter server) 
Developer Support Inactive Active community and documentation 
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Nav2 enables the robot to respond more quickly in environments with dynamic obstacles. In this regard, 
Nav2 is much more suitable for modern applications. 

The Nav2 system of ROS2 is a framework that allows the robot to move autonomously. This system 
operates using a Behavior Tree, which determines the order and timing of the robot’s tasks. In the Nav2 system, 
three main tasks are managed by three separate action servers: 

1. Planner Server: 

• Generates a path from the robot’s current position to the target. 
• Can run different planning algorithms (e.g., A*). 

2. Controller Server: 

• Follows the path generated by the planner. 
• The DWB (Dynamic Window Based) controller used in this thesis operates here. 
• Adjusts the robot’s speed and direction in real time and prevents collisions. 

3. Recovery Server: 

• Activates when the robot cannot reach the target. 
• Performs recovery behaviors such as reversing or reorienting. 

The Behavior Tree (BT) controls when and in what order these three servers operate. Each task is 
considered a “branch” of the tree. It ensures the sequence: plan the path, follow the path, and if an obstacle is 
encountered, perform recovery. 
 

Nav2 System and Schematic Structure 
 
+---------------------------+ 
|  IMU + Odometry + AMCL    | ← Precise localization (position and orientation) 
+-------------+-------------+ 
              ↓ 
+---------------------------+ 
|      Local Planner        | 
|           DWB                   | ← Path generation based on velocity, direction, and obstacle status 
+-------------+-------------+ 
              ↓ 
        cmd_vel → Robot Decision 
 
* Note: This structure operates under the ROS2 Nav2 system. 
* AMCL → Performs the localization task 
* DWB → Operates under the Controller Server 
* Planner Server (optional) generates global path 
* Recovery Server → Activates if cmd_vel cannot be generated 
 

Robot Sensors and ROS2 System Architecture 
 
* Physical Layer: 
   → IMU, Odometry, LiDAR 
   (Onboard robot hardware sensors) 
 
⬇ Sensor data is transmitted to the ROS 2 system 
 
* Software Layer (ROS 2): 
   → ROS 2 provides all communication and infrastructure 
 
   ├── Nav2 (Navigation System) 
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   │    ├── Planner Server (optional, not used in this thesis) 
   │    ├── Controller Server → Runs DWB planner 
   │    └── Recovery Server → Executes recovery behavior if an obstacle is detected 
   └── AMCL → Localization (position estimation) 

The navigation packages of ROS, Nav1 and Nav2, enable mobile robots to find the safest and most 
efficient path to the target. While Nav1 is compatible with ROS1, Nav2 operates under the ROS2 framework and 
offers a much more flexible structure. 

Sensors such as IMU, odometry, and LiDAR generate raw data regarding the robot's movement, 
orientation, and surroundings. This data is transmitted to the software framework known as ROS 2. ROS 2 
manages all communication, data flow, and inter-module connections within the system. The Nav2 navigation 
system also operates within this layer. The robot detects obstacles using LiDAR and performs real-time safe path 
planning with the DWB planner based on the current costmap. Although this structure does not directly track 
moving obstacles, it enables the robot to respond safely by slowing down or changing direction when obstacles 
are detected. 
 

DWB and TEB Planners 

In the Nav2 system, two local planners are provided by default: 
• DWB (Dynamic Window Based): 

The ROS2 version of DWA. It selects a safe path in real time by taking into account the robot’s 
velocity, direction, and nearby obstacles. 

• TEB (Timed Elastic Band): 
Generates more flexible and optimal paths by also considering time. However, it has a higher 
computational cost. 

These planners are designed to ensure that the robot continues to function smoothly even when 
encountering moving obstacles. In this study, only the DWB planner was used. 
 

3.2.2.1 Environmental Representation and Costmap2D 

In the ROS2 system, the environment is represented by a special structure called a costmap, which 
enables the robot to understand its surroundings and perform motion planning. This map numerically expresses 
the positions of obstacles and whether the robot can pass through specific areas. Using this map, the robot’s 
planner and controller modules can generate a safe path around obstacles. The calculations are performed by 
minimizing a cost function that ensures the robot maintains a safe distance from obstacles. 
The costmap adds a safety margin around obstacles by assigning high costs to nearby cells to prevent direct 
collisions. 
The costmap is a two-dimensional grid-based map of the environment. In this map: 

• Each cell has a value between 0 and 255. 

• This value indicates how "dangerous" the cell is for the robot. 

• Internally, these values are grouped into three main categories: 

o 0 → FREE (Free, safe to pass) 

o 254 → OCCUPIED (Occupied by an obstacle, impassable) 

o 255 → UNKNOWN (Unknown, no sensor data available) 

The costmap defines danger zones at different levels. 
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Table 3.4: Meaning of Cost Values 
Cost Type Meaning 
Lethal There is a direct obstacle in the cell. Impassable. 
Inscribed Very close to the robot's center. High risk of collision. 
Possibly Circumscribed Near the robot's outer frame. Collision possible depending on the turning 

direction. 
Free Space No obstacle in the cell. Safe to pass. 
Unknown No sensor data about the cell. Passage might be risky. 
Intermediate Values The value ranges between 0–254 depending on proximity to obstacles. Cost 

decreases with distance. 
 

The costmap structure in ROS2 enables the robot to perceive the environment more intelligently and 
flexibly. Thanks to its layered architecture, the robot can recognize both static obstacles and moving objects 
more accurately and quickly. This structure provides a significant advantage for robots navigating in 
environments that are dynamic and populated by humans. 
 

3.2.3 TurtleBot3 
In this study, the TurtleBot3 Burger mobile robot platform was used for both simulation and real-world testing. 
TurtleBot3 is a small-sized, portable, and modular ROS-based robot developed specifically for academic 
research, education, and prototyping purposes. 

The hardware of the robot consists of key components such as: 

• A wheeled chassis (mobile base), 

• A 360° LiDAR sensor for environmental perception, 

• An IMU (accelerometer, gyroscope, magnetometer), 

• Encoders (for wheel measurement). 

TurtleBot3 was chosen for this study due to its compatibility with ROS 2, support for planners like Nav2 and 
DWB, availability of both simulation and physical testing capabilities, widespread use in academic studies, 
comprehensive documentation, and open-source structure. 

Technical Specifications (TurtleBot3 Burger): 

 

Figure 3.3 TurtleBot3 Burger Illustration 
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Table 3.5. Technical Specifications of TurtleBot3 Burger 
Specification Value 
Maximum Speed 0.22 m/s 
Payload Capacity 15 kg 
Dimensions (L x W x H) 138 x 178 x 192 mm 
Weight (with all components) 1 kg 
Processor (MCU) 32-bit ARM Cortex-M7 (216 MHz) 
SBC Used Raspberry Pi 
LiDAR Sensor RPLIDAR A3 (used instead of LDS-01 in this thesis) 

 
The physical structure of the robot directly affects the placement of its sensors and its perception 

capabilities. The TurtleBot3 platform offers a compact system equipped with LiDAR and IMU (ROBOTIS, 
2017). This hardware is designed to work in integration with ROS2-based systems and serves as a suitable 
platform for dynamic testing (Kohlbrecher et al., 2011). 

The RPLiDAR A1 sensor mounted on the robot is used to collect environmental data. This sensor 
performs 360° scanning and transmits the LiDAR data to the ROS 2 system, enabling the costmap to be updated. 
 

3.3 Dynamic Path Planning 
Today, with advancements in artificial intelligence for image processing and improvements in camera 

technologies, many robotic systems detect moving obstacles based on camera data. However, the main 
disadvantage of these methods is that they require high processing power, which in turn demands more 
expensive hardware. 

Therefore, LiDAR-based systems offer a more cost-effective alternative to vision-based approaches. 
The required processing steps for this are: 

• Filtering the LiDAR data, 

• Interpreting this data as obstacles, and 

• Tracking moving obstacles. 

Günümüzde görüntü işleme alanındaki yapay zeka gelişmeleri ve kamera teknolojilerindeki ilerlemeler 
sayesinde, birçok robot sistemi hareketli engelleri kamera verilerine dayanarak algılamaktadır. Ancak bu 
yöntemlerin en büyük dezavantajı, yüksek işlem gücü gerektirmeleri ve dolayısıyla daha pahalı donanımlar 
gerektirmeleridir. 

Bu nedenle daha ekonomik bir çözüm olan LiDAR tabanlı sistemler, görüntü işlemeye alternatif olabilir. 
Bunun için gereken işlem adımları: 

• LiDAR verilerinin filtrelenmesi, 
• Bu verilerin engel olarak yorumlanması ve 
• Hareketli engellerin takip edilmesi (tracking) sürecidir. 

3.3.1 LiDAR-Based Planning Solutions 
Moving obstacles are mostly handled at the local planning level. In ROS2 Nav2, this is done through the 
Controller Server. 

DWB Controller (Dynamic Window Based): 

• Evaluates the combinations of translational and rotational velocities of the robot. 

• Calculates all possible velocities the robot can achieve starting from its current velocity. 

• Eliminates velocity combinations that would lead to a collision. 

• Selects the most suitable one among the remaining options using a cost function. 

• This cost considers factors such as the robot’s orientation toward the goal, distance from obstacles, and 
current speed. 

TEB Controller (Timed Elastic Band): 
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• The path is divided into small segments, and each segment behaves like an elastic band that deforms to 
avoid obstacles. 

• In this system, time information is also assigned to each path segment. Thus, both time and distance are 
optimized. 

Real Application with TEB 

 

Figure 3.4: Testing of the TEB Method in a University Environment 

The usability of TEB was tested in an experimental study. The TEB-based test scene used in this study 
was directly taken from the structure of the Marathon 2 system by Macenski et al. (2020). In a university 
corridor filled with people, two robots were guided using Nav2 and TEB. Although the robots reached their 
targets, they exhibited recovery behavior with an average duration of 4.3 seconds. 

The causes of this situation were poor localization due to LiDAR beams being blocked by people, and 
the need for re-planning because moving individuals crossed the robot’s path. In such cases, the robot generally 
switched to a “wait” command, waiting for the obstacle to move away before continuing. 
 

Conclusion: 

 

Figure 3.5 Map Representation of Obstacles in the Simulation Environment 

Although TEB indirectly accounts for dynamic obstacles, it does not employ a specialized structure that 
explicitly detects them. For mobile robots to reach their goals in dynamic environments without collisions, real-
time detection and interpretation of surrounding obstacles is critical (Fox et al., 1997). In this context, the 
Dynamic Window Approach allows the robot to determine collision-free paths in accordance with its 
instantaneous speed and turning angles (Seder & Petrović, 2007). 
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Table 3.7 Comparison of Dynamic Path Planning Methods 

Feature / Algorithm DWB TEB (Timed Elastic Band) 
Obstacle Detection Detects static obstacles Perceives as static obstacles (no 

specific support for dynamic ones) 
Dynamic Obstacle 
Sensitivity 

None Indirect, no specific reaction 

Path Planning Step-by-step decisions toward the 
goal 

Plans the entire path flexibly from 
start to end 

Waiting Behavior Can stop if there is an obstacle May wait if the obstacle is too close 
and path is blocked 

Navigation Duration Moderate Longest (many recovery behaviors) 
Path Naturalness Moderate (may include short turns) High (smooth and natural turns) 
Computational Load Low High (includes optimization solving) 
Performance in Complex 
Environments 

Moderate Moderate to high (higher recovery 
rate) 

 
3.3.2 Methods 

The IMU and odometry data collected from the robot’s own sensors serve as the primary inputs for estimating 
the robot’s position. However, the exact position is calculated by the AMCL algorithm within the ROS 2 system. 
In other words, raw hardware data is refined and processed by software. The method consists of three main 
steps: 

1. Object Detection 

2. Cost Assignment 

 

In this study, the method used to enable autonomous movement of the robot consists of three 
fundamental steps where both hardware and software components operate in coordination. First, data obtained 
from the robot's IMU and odometry sensors is used to estimate the robot’s current position and orientation. This 
estimation is refined by the AMCL algorithm running in the ROS 2 system. AMCL interprets the sensor data on 
the map and provides a corrected estimate of the robot’s true location. 

This positional information is then transferred to the local planner algorithm DWB (Dynamic Window 
Approach). DWB analyzes the robot’s current velocity, heading, and obstacle data from the costmap to compute 
the safest motion command (cmd_vel). This command is then sent directly to the robot, allowing it to move 
toward the goal while avoiding collisions. 

Only the DWB algorithm was utilized in this thesis. The system operates based solely on current sensor 
data, taking into account both static and immediate environmental changes. 
 

3.3.2.1 Object Detection 

In this study, the detection of moving objects was directly carried out through the costmap (cost map) 
representation. The robot’s surroundings are perceived via the LiDAR sensor, and this data is projected onto the 
costmap. Each costmap cell is monitored over time, and the change between two consecutive updates is 
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evaluated. If the change exceeds a certain threshold, the cell is considered to represent a moving object. This 
method can be represented by the following formula: 

F(t) = |C(t) − C(t−1)| > c 
Motion_Difference = |Current_Value − Previous_Value| > Threshold 

Here, F(t) is the condition for determining motion; C(t) is the current costmap cell value, C(t−1) is the previous 
value, and c is a predefined threshold in the system. Cells flagged with this logic are grouped together and 
interpreted as moving objects. In this study, the position tracking or speed estimation of the moving objects was 
not performed. 

3.3.2.2 Cost Assignment 
After detecting moving objects, the potential hazards they may pose to the robot are represented on the 

costmap. For this purpose, a two-dimensional Gaussian function is applied around each moving obstacle, 
considering its direction and speed. Thus, the surroundings of the obstacle are extended with a risk zone that 
decreases based on distance. Fast-moving objects are assigned larger risk areas; especially in the direction of 
movement, the spread is greater, while it is less behind the object. This structure enables the robot to be more 
sensitive to potential threats in front of it. This approach is inspired by human behavior-based social space 
modeling. Mathematically, the risk (cost) value of a cell is calculated to decrease according to its distance from 
the obstacle. The Gaussian-based formula used is as follows: 

Formula: 
C(q) = A ⋅ exp(−d² / 2σ²) 

Cost = Max value × exp(−distance² / 2spread²) 

Here, C(q) represents the cost value of the cell; d is the distance between the cell and the obstacle; σ 
represents the spread coefficient. As a result, the system analyzes environmental changes using only LiDAR data 
and transfers this information to the DWB local planner to ensure real-time and safe path planning. 
 

3.4 APPLICATION 
 

In this section, how the proposed approach is implemented under the ROS2 framework within the scope of this 
thesis is explained in general terms. In this section, how the developed system was implemented under the ROS 
2 platform is explained. During the application process, the Linux-based Ubuntu 20.04 operating system was 
used. Due to performance problems encountered in virtual machines, the system was installed directly on a 
physical computer. The Humble distribution of ROS 2 was installed using Debian packages from official 
sources. 
During the development process, two main workspaces were created: 

• turtlebot3_ws: Contains the basic driver and simulation packages for the TurtleBot3 robot. The robot 
model was used both in simulation and on real hardware via this workspace. 

• ros2_ws: The main workspace containing the custom software and ROS 2 extensions developed within 
the scope of the thesis. 

Applications were tested in the Gazebo simulation environment, and RViz interface was used for visualizing the 
outputs. 

3.4.1 Messages and Topics 
Custom ROS message structures were defined for the detection and tracking of dynamic obstacles: 

• Obstacle.msg: Contains identification (UUID), position, velocity, and size information for each 
obstacle. 

• ObstacleArray.msg: Carries the list of all simultaneously detected obstacles. 

These messages were transferred to other components of the system via the /detection and 
/local_costmap/tracking topics, respectively. Velocity information was added only during the tracking phase. 
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3.4.2 Costmap Transformation (Obstacle Detection)  
Dynamic obstacle detection is performed directly based on the costmap data generated by the robot. 

This map, created using information obtained from the LiDAR sensor, analyzes time-varying cells to identify 
moving objects. Each moving cell is evaluated in groups and defined as a single object. The detected objects are 
then published in the Obstacle.msg format. With this approach, inspired by methods developed on graph-based 
optimization and data representation, dynamic obstacles are extracted from costmap data (Kümmerle et al., 
2011). 

The figure below illustrates how an obstacle is detected over time: 

 

(a) t = 1s.  (b) t = 2s  (c) t = 3s 
Figure 3.6 Detection of obstacles over time 

 
3.4.3 Obstacle Detection and Costmap Update 

 

In this study, the detection of obstacles in the environment and the modeling of environmental risks were carried 
out directly on the costmap data. The environment of the robot is scanned using a LiDAR sensor, and the moving 
obstacles are reflected on the costmap using this sensor data. 
 
Time-varying cell values are analyzed based on a predefined threshold, and obstacle regions are identified. These 
identified areas are evaluated as potential danger zones around the robot. 
 

 
Figure 3.7 Working mechanism of filters and algorithms in simulation environment 

 

3.4.4 Dynamic Costmap Layer  
Based on the detected moving obstacle regions, risk zones were created around the robot. This process is 
intended to enhance the robot’s environmental awareness and support safe path planning. 
Each obstacle is surrounded by a Gaussian-based 2D function centered on its position, expanding the area and 
assigning higher cost values. 
This allows the robot to generate routes that are more sensitive and safer, especially in response to obstacles that 
suddenly appear in front of it. 
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Figure 3.8 Visualization of dynamic costmap layers in simulated environment 

 

4. RESEARCH RESULTS AND DISCUSSION 
4.1 Simulation Environment and Tests  

 

ROS2 is an open-source platform that enables modular development of robot software (Quigley et al., 2009). 
Within this architecture, the Nav2 package works with local and global planners to perform path planning in 
dynamic environments (Macenski et al., 2020). The physical simulation environment of the robot is supported by 
Gazebo software, allowing real-time testing (Koenig & Howard, 2004).  

The simulation studies were carried out in the Gazebo environment using the ROS2 Nav2 package and 
the TurtleBot3 Burger robot model. The aim was to analyze the impact of static and dynamic obstacles on path 
planning and observe how the costmap configuration guides this planning. Tests were conducted under three 
different scenarios: 

1. In the first scenario, the robot was directed to fixed target points on a map without obstacles. This test 
was performed to establish baseline time and distance reference values. 

2. In the second scenario, physical obstacles (tables, chairs, etc.) were added to the map, and the robot was 
directed to the same targets. The robot's route changes and deviation amounts in response to these 
newly detected obstacles were analyzed. 

3. In the third scenario, new obstacles were both simulated and costmap parameters were altered. By 
narrowing the costmap width, the robot was allowed to pass closer to obstacles. This configuration 
resulted in a more flexible but riskier path. 

4.1.1 Dynamic Obstacle Scenario 
In this study, the robot was first directed toward fixed targets on a pre-known map created using SLAM. Then, 
new obstacles were manually added to the map to observe the system’s response. These obstacles were not 
initially present on the map but were introduced into the scene during simulation.  

The robot detected these new obstacles using the LiDAR sensor and replanned its route via the costmap. 
This demonstrated the system’s sensitivity to environmental changes regardless of whether the obstacle was 
moving.  

Since the timing and position of the added obstacles were manually determined by the user, the scenario 
required an instant reaction from the robot—similar to encountering a moving object. In this regard, the system’s 
dynamic obstacle avoidance capability was evaluated. 
 

 

Figure 4.1 Gazebo Simulation 
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4.1.2 RViz Observations 
In the observations made via the RViz interface, the robot’s costmap updates were monitored in real-

time. During the simulations, deviations along the robot's path, arrival times to the target, and obstacle avoidance 
maneuvers were recorded in detail. Especially in the third test scenario, it was observed that the robot reached 
the target more quickly after costmap parameter changes. 

     

Figure 4.2 RViz Maps 

4.2    SLAM (Simultaneous Localization and Mapping) 
In order for the robot to estimate its position on a given map, the AMCL (Adaptive Monte Carlo 

Localization) algorithm, which is the default in the ROS2 Nav2 system, was utilized. AMCL uses a particle filter 
to estimate the robot’s location on a known map. In the tests, the robot was localized using this method before 
being directed to the target. 

 

Figure 4.3 Simultaneous Simulation Image 

4.3   Simulation Tests 
The simulation tests were conducted on a fixed map using three different configurations. Each square 

has an edge length of 1 meter, and the costmap ensures a minimum radius of 20 cm around each obstacle in 
order to prevent the robot from colliding. In these configurations, both the obstacle types and the costmap 
settings were modified. In each setup, the robot was directed to the same target points, and the following 
variables were compared: path deviation, time to reach the goal, and total distance traveled. The results are 
summarized in the table below. 
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Figure 4.4 Python Software Coordinates 

Table 4.1 Performance Metrics of Route Planning Methods 

Environment 
Type 

Obstacle Type Costmap Update Route Changed? Path Length Duration 

Office Static No No 38 m 20 min 
Office Moving Target No Yes 42 m 24 min 
Office Moving Target Yes Yes 36 m 19 min 
Maze Static No No 15 105 sec 
Maze Moving Target No No 15 107 sec 
Maze Moving Target Yes No 15 103 sec 
Hexagonal Static No No 10 120 sec 
Hexagonal Moving Target No Yes 16 140 sec 
Hexagonal Moving Target Yes Yes 10 110 sec 

 

 

Figure 4.5. The Impact of Costmap Updates on Path Length in Different Environments 

 

 
Figure 4.6. The Impact of Costmap Updates on Task Duration in Different Environments 



JOURNAL OF NATURAL SCIENCES AND TECHNOLOGIES 
2025, 4(1), pp. 345-364, DOI: 10.5281/zenodo.16410654 

 363 

 
4.4 Discussion 
According to the test results, the robot's tendency to change its route increases in environments with moving 

obstacles. While the route generally remains stable in scenarios with static obstacles, the real-time update of 
moving obstacles to the costmap forces the robot to replan its path. Notably, by modifying the costmap 
parameters, the robot was able to select shorter paths and reach the target more quickly. This demonstrates the 
significant impact of costmap configuration on overall system performance. Variables such as environment type, 
complexity level, and frequency of obstacle movement directly influence both route and time performance. 
 

5. CONCLUSIONS AND RECOMMENDATIONS 
 
In this thesis, a ROS2-based path planning approach was implemented to enable mobile robots to reach their 

targets safely and flexibly in indoor environments with dynamic obstacles. The developed system utilized the 
default local planner of the Nav2 framework, the DWB (Dynamic Window Based) controller. The main 
objective was to allow the robot to exhibit basic adaptive responses to real-time environmental changes. 

Simulation tests were conducted in the Gazebo environment using the TurtleBot3 robot. During these tests, 
an obstacle that was not initially present on the map was added along the robot’s route to the goal, and the 
robot’s response was observed. It was noted that objects of a certain height could be detected by the LiDAR 
sensor, enabling the creation of an updated environmental model on the costmap. Based on this model, the DWB 
controller was able to generate a new path. 

Once the obstacle was detected by the LiDAR, the robot’s costmap data was dynamically updated, and the 
DWB planner performed a new path planning process using this information. This allowed the robot to change 
its route before any collision occurred, resulting in a successful navigation sequence. Through this architecture, 
the system gained fundamental flexibility to respond to environmental changes without solely relying on a static 
map. 

Simulation results demonstrated that the DWB controller could replan based on sensor input in response to 
environmental changes and reach the goal successfully. The quick engagement of the robot’s decision-making 
mechanism prevented collisions and enhanced navigation performance. 

During the navigation process, the LiDAR sensor was used for environmental awareness, while the robot’s 
position and movement data were obtained from IMU sensors and evaluated within the system. These data were 
integrated using the AMCL algorithm in the ROS2 framework, forming a robust localization structure. 

As a result, the DWB-based approach implemented in this study provided a fast and reliable response to 
basic environmental changes, combining environmental perception with path planning to achieve a balanced and 
collision-free navigation process. This system offers an effective alternative, particularly in environments with 
sudden environmental changes, by enabling rapid route updates with minimal delay. 
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