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ABSTRACT 
 

It is established that the main problems of algorithmization for the management of technological processes under conditions 
of uncertainty are the high dimensionality of the task, the need for prompt identification of technological objects of control and 
the choice of optimal control influences. It is shown that these problems can be solved using fuzzy logic and decision theory. 

A method for formalizing fuzzy concepts based on an objective probabilistic approach is proposed, which increases the 
reliability of modeling results. Based on fuzzy logic, a method for identifying multidimensional technological objects has been 
developed, in which, in order to reduce the dimensionality of the problem, a conjunctive inference rule is used instead of the 
generally accepted disjunctive one to build a relationship between a multidimensional input and output, which simplifies the 
inference procedure and leads to a more compact and convenient model for practical application. 

Keywords: modeling, technological object, fuzzy environment, operational identification, problem dimension. 
 

 
1. INTRODUCTION 
The urgency of the task of increasing the efficiency of technological process control (TP) under conditions of 

uncertainty has necessitated the development of an appropriate regularized apparatus. The analysis of the 
functioning of various control systems in industry based on fuzzy models has revealed the high efficiency of the 
new intelligent technology in creating flexible mobile control systems for complex poorly formalized industrial 
objects for various purposes. At the same time, studies have shown that the design methodology and software and 
information support tools for such systems to solve the problems of controlling the production of technical 
automation equipment (TAE) need to be improved. 

 
2. MODELING OF TECHNOLOGICAL OBJECTS IN A FUZZY ENVIRONMENT 
One of the most important problems that ultimately determines the efficiency of managing modern 

technological objects (TOs) is the construction of an effective mathematical model. There are two main approaches 
to modeling in a fuzzy environment. The first approach is related to the construction of fuzzy functional 
dependencies or fuzzy functional systems, and the second is related to the construction of fuzzy relationships. 

In practical situations, the dependence	𝑦 = 𝐹(𝑥) between the input	𝑥 = (𝑥!, 𝑥", … 𝑥#) and the output of a 
maintenance facility is specified as a set of discrete data, as a certain family of points {(𝑥$ , 𝑦$)}, 𝑖 = 1,… ,𝑁 . In 
the case of noisy or inaccurate data, the specification of F can only be approximate. Assuming some structural 
form of F, the available data can be used to identify the parameters of F. The usual approach to solving the 
identification problem in this case is to move from a fuzzy formulation of the problem to a clear one by using α-
level sets of fuzzy variables [1]. 

Thus, [2] considers the case when the dependence between these variables is represented in the form of a fuzzy 
linear regression equation with unknown parameters. In this case, it is assumed that	𝑥$ has deterministic values, 
and y has fuzzy values. 

The task of identifying the TO is to estimate the parameters of the function 
 

𝑦/ = 𝐹(𝑥!, … 𝑥#, 𝑎/%, … 𝑎/#) = 𝑎/% + 𝑎/!𝑥! + 𝑎/"𝑥" +⋯+ 𝑎/#𝑥#	,   (1) 
 

where ~ is the fuzziness operator. 
To estimate the parameters, we use the criterion of minimizing the deviation of the fuzzy values of the output 

parameter obtained by (1) from its sample fuzzy values 𝑦&3  
 

𝑦/ = ⋃ ('
$(! 𝑦&3−𝐹(𝑥$ , 𝑎/%, … 𝑎/#))" → min.      (2) 

 
By defining α-level	(𝛼 ∈ [0,1]) sets of fuzzy coefficients𝛼&3 , for each level𝛼) 	(𝑗 = 1,… ,𝑚) , we obtain a 

regression equation similar to (1), but with clear coefficients. Thus, the original problem of estimating the 
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coefficients of the fuzzy regression equation (1) is reduced to the classical problem of estimating the parameters 
of multiple regression. 

When structural identification of TOs is required, representations of the desired mappings are usually built 
using fuzzy granules [3]. 

Consider the data consisting of	{(𝑥$ , 𝑦$)}, 𝑖 = 1,… ,𝑁 , where	𝑋$ = CD𝑥, 𝜇*!(𝑥)FG and𝑌$ = CD𝑦, 𝜇+!(𝑦)FG are 
convex and normalized fuzzy sets on X and Y, respectively; 𝜇*!(𝑥), 𝜇+!(𝑦)	are the corresponding membership 
functions (MFs). For simplicity, we assume that	𝑋, 𝑌 ⊂ 𝑅!. For any i, the set	𝑌$ is the image of the set	𝑋$ under the 
mapping F, i.e., the principle of continuation can be used 

 
∀𝑖, ∀𝑦			𝜇+!(𝑦) = sup

,∈.
𝜇*!(𝑥)      (3) 

 
under the constraint	𝑦 = 𝐹(𝑥). Relationship (3) can be expressed in words as follows: the more x belongs to	𝑋$ , 
the more y belongs to	𝑌$. In other words, if F is narrowed to the carrier 𝑆(𝑋$) of the set	𝑋$ , then F is a mapping 
with a fuzzy definition domain	𝑋$ and a fuzzy value domain	𝑌$. The identification problem is to find a function F 
that satisfies the relation (3). Each pair of sets (𝑋$ , 𝑌$ ) gives rise to a part	𝐹$ of the function F defined on	𝑆(𝑋$) . 
Then all parts of	𝐹$ must be combined into a single function F. 

The set of conditions for the existence of distinct mappings F that underlie the granular specification	{(𝑋$ , 𝑌$)} 
is as follows 

 

P
∀𝑖, ∀𝑥 ∈ 𝑆(𝑋$), Ф$(𝑥) = R𝑦|𝜇+!(𝑦) = 𝜇*!(𝑥)T ≠ 0	,

∀𝑖, ∀𝑗 ≠ 𝑖, ∀𝑥 ∈ 𝑆 D𝑋$V𝑋)F ≠ 0,Ф$(𝑥) ∩ Ф)(𝑦) ≠ 0	.
 

 
Under these conditions, the function F can (not exclusively) be chosen from the following conditions: ∀𝑖, ∀𝑥 ∈

𝑆(𝑋$), 𝐹(𝑥) ∈ Ф$(𝑥). If F does not exist, then a fuzzy relation R is constructed to represent the granular 
specification instead of a clear representation of F. From the point of view of general systems theory [4], the TO 
is represented as a Cartesian product 𝐷 ⊂ 𝑋 × 𝑌. 

Generalization of (3) to a fuzzy representation leads to the problem of finding a fuzzy relation R on	𝑋 × 𝑌, 
constructed from fuzzy relations R, such that 

 
∀𝑦			𝜇+!(𝑦) = max𝑚𝑖𝑛

,∈.
D𝜇*!(𝑥), 𝜇/!(𝑥, 𝑦)F .     (4) 

 
As a solution to (4), we can take the direct product	𝑅$ = 𝑋$ × 𝑌$ , (fuzzy granule). Then (4) will be written in 

a compact form as	𝑌$ = 𝑋$ × 𝑅$ , and the general solution is defined as 
 

𝑅 =]𝑅$

'

$(!

=]𝑋$ × 𝑌$

'

$(!

	, 

where⋃ means union. 
This approach is widely used in the fuzzy control literature [5]. 
Using some kind of multi-valued implication 𝑅$ , can also be defined as follows: 
 

𝜇/!(𝑥, 𝑦) = 𝑚𝑎𝑥 D1 − 𝜇*!(𝑥), 𝜇+!(𝑦)F	, 

𝜇/!(𝑥, 𝑦) = 𝑚𝑖𝑛 D1,1 − 𝜇*!(𝑥)+𝜇+!(𝑦)F	. 
 

In this case, the overall solution is defined as 
 

𝑅 =V𝑅$

'

$(!

	, 

 
where	∩ denotes the intersection. 
Although the fuzzy representation of a fuzzy granular specification is the most appropriate in the face of 

structural uncertainty in the TO model, the analytical approach remains very attractive. This is because a fuzzy 
relation R on	𝑋 × 𝑌 can be equivalent to a fuzzy representation of F. This representation is convenient for 
generalized analytical operations such as integration and differentiation. 
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To obtain an analytical representation of the original point data set, we combine the fuzzy granules, obtain the 
fuzzy relation R, and then approximate it using (L-R)-type functions. 

The effectiveness of using fuzzy models is largely determined by their adequacy to managed maintenance. 
This issue has been theoretically studied very little. 

In [6], the issues of constructing a fuzzy relation that has the property of good mapping are considered, while 
imposing difficult-to-implement restrictions on the membership functions of a fuzzy relation. 

In [2], conditions were obtained under which the composite inference rule (4) is strictly fulfilled, which ensures 
the minimum value of the adequacy criterion 

 

𝐽 =_	
'

$(!

` D𝜇+!(𝑦) − 𝜇+0!(𝑦)F
"
𝑑𝑦	,

1

 

 
where	𝑌b$ 	 is the estimate obtained from (4). 
Strict implementation of the compositional rule means that for every given	𝑋$, it is true that 

𝑌$ = 𝑋$ ∘ 𝑅	where∘ is the sign of the maximal product operation. Necessary conditions for the adequacy of a fuzzy 
relation are: regularity of matrices R, normality of sets, and fulfillment of the conditions	⋂ 𝑋$'

$(! = Ø,⋂ 𝑌$'
$(! = Ø. 

The results obtained are valid for a multidimensional TP if the rules have a nested structure. However, this 
condition is often not met. 

Thus, obtaining identification conditions for fuzzy systems is relevant, since the known works do not fully 
reflect the requirements for the correctness of the results. 

The fulfillment of the conditions for the identification of a fuzzy model, i.e., the conditions of uniqueness of 
the solution and stability with respect to the initial data, is ensured by the correct mathematical formulation of the 
identification problem. In general, the problem is decomposed into structural and parametric identification, i.e., 
selecting a class of structures containing the desired solution, setting a priori the range of acceptable values of the 
structure's parameters, and finding their specific values. For fuzzy technological systems in relations, structural 
identification is carried out by selecting the following parameters [7]: a set of fuzzy variables and the power of 
fuzzy input sets	𝑋$ = {(𝑥, 𝜇*!(𝑥))} and output sets	𝑌$ = {(𝑦, 𝜇1!(𝑦))}, i = 1,..., N; the type of corresponding 
membership functions		𝜇*!(𝑥), 𝜇1!(𝑦); implication options	𝑋$ → 𝑌$, i.e. the logic of constructing a fuzzy 
relationship matrix. Parametric identification is carried out by selecting the region of valid fuzzy relations {𝑅2 } 
that ensure the correctness of the solution, and determining the results of measurements of the input and output 
parameters of a particular fuzzy relation and its corresponding matrix 𝑅 ⊂ {𝑅2}. 

In addition to the general problems of modeling objects in a fuzzy environment, the TP for the production of 
motor vehicles has its own problems: 

- the problem of developing methods of operational identification to build an adequate mathematical model 
that quantifies the TP in terms of "input-output"; 

- the problem of dimensionality when building a "current" model, since the TP as a control object is 
characterized by a large number of input and output parameters. 

In addition, the problem of model adequacy is closely related to the problem of reliability of modeling results 
due to the ambiguity of the membership functions. The following material is devoted to solving these problems. 

 
3. METHODS OF FORMALIZING FUZZY CONCEPTS AND VARIABLES IN MODELS OF 

TECHNOLOGICAL OBJECTS 
In TO models, fuzziness can be formalized in different ways. 
There are the following main classification features of methods of formalizing fuzziness [1]: 
- by the type of representation of a fuzzy subjective assessment of any value (fuzzy set)); 
- by the type of the area of the MF values; 
- by the type of MF definition area; 
- by the type of correspondence between the definition domain and the value domain (unambiguous, multi-

valued); 
- based on the homogeneity or heterogeneity of the MF value range. 
The variety of types of fuzzy sets that arises in this case opens up wide possibilities for their application in the 

models of TP management of the TMA production. Thus, one of the grounds for the classification of fuzzy sets is 
the type of the MF definition domain. It is usually assumed that the MF definition domain of a fuzzy set coincides 
with the base set X. However, often the accuracy of modeling a real process does not deteriorate if you define 
fuzzy sets on subsets of the universal set X. Moreover, this makes it possible to reflect the dynamics of changes in 
the base set in a particular decision-making situation, for example, reducing the full number of comparable 
alternatives in a time-sensitive choice problem, and thus reduce the overall dimensionality of the problem. 
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A review of various ways of formalizing fuzziness has shown that two main approaches are being developed 
in this direction. The first is based on generalizing the concept of an element belonging to a set, which leads to 
blurring of the boundaries of the set, and in the extreme case, to the appearance of an object with indefinite 
boundaries - a semi-set. The second approach involves describing fuzziness with the help of a hierarchy - a family 
of ordered clear sets. 

In both cases, the existing non-stochastic uncertainties are formalized through the MF. Expert judgment is 
usually used to build the MF. 

There are a number of methods for constructing a fuzzy set MF based on expert opinions. Two groups of 
methods can be distinguished: direct and indirect methods. Direct methods are determined by the fact that the 
expert directly determines the rules for determining the values of the MF. An example of direct methods is the 
direct setting of the MF by a table, formula, or example. In indirect methods, the values of the MF are selected in 
such a way as to satisfy pre-formulated conditions. Expert information is only input for further processing. 
Additional conditions can be imposed on both the type of information received and the processing procedure. 

Obviously, when building a MF based on expert opinions, we risk making mistakes that can significantly affect 
the solution, since the initial uncertainty of the problem essentially turns into uncertainty, ambiguity of the MF 
task. It is the subjective nature of MF (regardless of their interpretation) that leads to a certain skepticism and calls 
into question the effectiveness of applying fuzzy methods in practice. 

An urgent task is to develop various methodological approaches to the formalization of fuzzy concepts that 
will increase the reliability of modeling results. 

One way to solve this problem is the so-called concept of decision stability. Its essence lies in the fact that 
instead of constructing a MF, it is enough to roughly estimate the ranges of its non-trivial change, and then evaluate 
the behavior of fuzzy decisions when the MF is arbitrarily varied in the obtained valid regions. At the same time, 
very general and weak constraints are imposed on the MF. The optimal solutions are selected based on the obtained 
stable solutions, i.e., solutions that are not sensitive to changes in the MF. 

The practical implementation of the described approach encounters a number of purely technical difficulties 
due to the need to repeatedly solve the decision-making problem. Thus, in [3], the degree of affiliation is 
determined through subjective probabilities. 

This paper proposes a method for formalizing fuzziness based on an objective probabilistic approach. To 
construct the MF, we use the beta distribution [8]. The density of the beta distribution, defined in the interval [a, 
b], is 

 

f(x, γ, η, a, b) = j

1
b − a

G(γ + η)
G(γ)G(η) D

x − a
b − aF

34!
D1 −

x − a
b − aF

54!
,

a ≤ x ≤ b,			0 ≤ γ,			0 ≤ η,
0	in	other	cases																																									

 

 
Here	𝛾, 𝜂 are the shape parameters, G(·) is the gamma function. 
The choice of the beta distribution is explained by the fact that it can have different shapes and, as a result, is 

used to describe a large number of real random variables whose values are limited to a certain interval. An example 
of such a random variable is the proportion of defective products on a production line per day. 

The beta distribution also describes estimates of the duration of technological operations. An optimistic (o), 
pessimistic (p), and most likely (m) estimate of the time required to complete the operation is selected. Based on 
this information, it is assumed that the operation completion time has a beta distribution in the interval [o, p]; the 
most probable value is m, and the mean square deviation (MSD) is equal to !

6
(𝑝 − 𝑜). 

The beta distribution is also used in the following situation. Suppose that there are m independent observations 
of some parameter in the TO. Let's arrange these values in ascending order. Let𝑦7 and𝑦#489! be the r-e smallest 
and s-e largest values, respectively. Then the proportion of x values of the original population that lie between𝑦7 
and𝑦#489! has a beta distribution with parameters	𝛾 = 𝑛 − 𝑟 − 𝑠 − 1 and	𝜂 = 𝑟 + 𝑠 , i.e. 

 
𝑓(𝑥; 𝑛 − 𝑟 − 𝑠 + 1, 𝑟 + 𝑠) = Г(#9!)

Г(798)Г(#47489!)
𝑥#4748(1 − 𝑥)7984!, 

0 ≤ 𝑥 ≤ 1	. 
 

This result is true regardless of the shape of the distribution of the random variable y. 
Obviously, we are in similar conditions when forming a fuzzy variable's MF. Usually, the interval of its change 

[a, b] and the most probable value m are known. Let's consider a random variable x that has a beta distribution on 
[a, b], and the mode of x is equal to m. Considering	𝑥= = >4?

@4?
	, , let's move to a random variable with a beta 

distribution on [0,1]. Accordingly, its mode is	𝑚= = A4?
@4?

 . Then the MSD of	𝑥= will be equal to 𝑠= = !
6	(@4?)

. 
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From [9] we have 

⎩
⎪
⎨

⎪
⎧(𝑠=)" =

𝛾	𝜂
(𝜂 + 𝛾)"(𝛾 + 𝜂 + 1) ,

𝑚= =
𝛾 − 1

𝜂 + 𝛾 − 2,			
(𝛾, 𝜂 > 1),

 

 
Where do we find the form parameters 𝛾, 𝜂. 
If there is additional information about the fuzzy variable in the form of a vector of its possible clear values{𝑥$} 

, then the expressions can be used to evaluate	𝛾 and 𝜂 
 

⎩
⎨

⎧�̂� =
1 − 𝑥
𝑠"

[𝑥(1 − 𝑥) − 𝑠"],

𝛾� =
𝑥�̂�
1 − 𝑥	,																													

 

 
where	𝑥 and	𝑠" are the sample mean and variance. 
Having built the density of the distribution	𝑓(𝑥) , we normalize it 
 

µ(𝑥) =
𝑓(𝑥)

max
,
	𝑓(𝑥)		. 

 
The function	µ(𝑥) is taken as the MF of the fuzzy variable. This approach allows us to obtain a parameterized 

family of MFs for a fuzzy variable. The choice of a particular MF is well aligned with the existing level of 
uncertainty (fuzziness). 

The maximum level of uncertainty corresponds to the case when we cannot identify the most probable value 
among all the values of a fuzzy variable. In this case, we get a partial type of beta distribution - uniform 
(𝜂 = 𝛾 = 1). 

The proposed approach differs from the existing ones by less subjectivity in the choice of the MF. Thus, its use 
increases the reliability of decision-making under uncertainty. The method is easy to implement and can also be 
used in the presence of linguistic descriptions. 

 
4. IDENTIFICATION OF MULTIDIMENSIONAL TECHNOLOGICAL OBJECTS UNDER 

CONDITIONS OF UNCERTAINTY 
A technological object as an object of identification can be considered as an element that dynamically 

transforms a certain signal. However, in order to correctly reflect the behavior of a maintenance facility under 
conditions of uncertainty, it is useful to adopt a different point of view, according to which the change in the 
internal state of the maintenance facility under the influence of various factors is taken into account [10]. Such a 
view of identification is important in order to unify the theoretical approach and generalizations to nonlinear and 
nonautonomous TOs under uncertainty. 

The description of a TP in the state space can be represented in general as follows: 
 

𝑋C9! = 𝐴 ∙ 𝑋C ,       (5) 
 
where	𝑋C and	𝑋C9! are the states of the TO at the moments	𝑡C and 𝑡C9!; 

A - some operator. 
The task of identifying the TO is to find an estimate of	А∗ such that the relation for	(𝑋C9!)∗, found from the 

model	(𝑋C9!)∗ = 𝐴∗ ∙ 𝑋C , is satisfied: 
 

𝑀{𝜌[𝑋C9!, (𝑋C9!)∗]} → min
E∗
	.      (6) 

 
As an operator A, let's take a fuzzy relation R that connects the input X and output Y of the maintenance facility. 

The adequacy of the model to the real process determines the quality of its management. Building an adequate 
model under conditions of uncertainty is one of the main problems of identifying the TP. 

This problem becomes more complicated if the TO is multidimensional. However, a characteristic feature of 
the TMA production is the multidimensional maintenance. Let's consider a method of identifying 
multidimensional maintenance, which allows us to reduce the dimensionality of the problem. 
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Let the TO be described by m input parameters	{𝑋!, … , 𝑋A} , each of which can take n values obtained 
experimentally, and one output parameter, and let the description of the TO be given in the form of productive 
rules: 

 
if		𝑋!!, … , 𝑋!) , … , 𝑋!A,			then		𝑌!,			otherwise
…																						…																									…																 	
if		𝑋$!, … , 𝑋$) , … , 𝑋$A,			then		𝑌$ ,			otherwise
…																						…																									…																
if		𝑋#!, … , 𝑋#) , … , 𝑋#A,			then		𝑌#,																 ⎭

⎪
⎬

⎪
⎫

    (7) 

 
𝑖 = 1,… , 𝑛, 
𝑗 = 1,… ,𝑚, 

 
where	𝑋$) = C�𝑢C , 𝜇*!#(𝑢C)�G is the i-th normalized fuzzy value of the j-th input parameter 

𝑋); 𝑢C ∈ 𝑈); 𝑘 = 1,… , 𝐾 ; 
𝑌$ = CD𝑣F , 𝜇+!(𝑣F)FG - is the i-th normalized fuzzy value of the j-th output parameter  

𝑌; 𝑣F ∈ 𝑉; 𝑙 = 1,… , 𝐿; 
𝑈) , 𝑉 - change areas	𝑋) and Y, respectively. 
System (7) is formalized as a set of fuzzy relationship matrices	R𝑅$)T , for which the MF is defined by the 

expression: 
 

𝜇/!#(𝑢C , 𝑣F) = 𝛺 �𝜇*!#(𝑢C), 𝜇+!(𝑣F)�	,     (8) 
 

where Ω is a certain fuzzy implication operator that connects input and output parameters. 
To calculate the values of the output parameter, a composite inference rule is used, the type of which depends 

on the type of operator (8). In fuzzy control, the relation	𝑅$) usually has an MF defined as: 

𝜇/!#(𝑢C , 𝑣F) = 𝑚𝑖𝑛 �𝜇*!#(𝑢C), 𝜇+!(𝑣F)�     (9) 
 

and the inference rule is of the form: 
𝑌G = ⋃ ⋂ 𝑋G) ∘ 𝑅$)A

)(!
#
$(! ,      (10) 

 
where	𝑋G) is the value of the parameter	𝑋) in the t-th dimension (𝑡 = 𝑛 + 1,… ). 
When using implication, it is assumed in advance that a fuzzy specialized mapping  

R𝑋)T → 𝑌 is treated as a "coarse mapping", the inverse of "coarsely injective", since when we 
have	R𝑋$!, … , 𝑋$) , … , 𝑋$AT , any other fuzzy value other than	𝑌$ is excluded. The use of implication (9) does not 
impose any restrictions in advance and does not prevent the pairs	�R𝑋$)T, 𝑌$� and�R𝑋$)T, 𝑌$= ≠ 𝑌$� from being 
represented in (7), which reduces the quality of the model in the sense of criterion (6). 

In addition, implication (9) corresponds to the direct product	R𝑋$)T × 𝑌$ , which does not contain the idea of a 
causal relationship between	R𝑋$)T and 𝑌$. 

Using the directed interpretation of the existing granular specification, which allows for a causal relationship 
between	R𝑋$)T and	𝑌$, we define	𝑅$) as follows: 

 
𝜇/!#(𝑢C , 𝑣F) = 𝑚𝑎𝑥 �1 − 𝜇*!#(𝑢C), 𝜇+!(𝑣F)�	,    (11) 

 
We should note the property	𝑅$) defined in (11): 
 

V𝑋G) ∘ 𝑅$)

A

)(!

⊃ 𝑌G , 

 
This property is due to the partial overlap of	𝑋G) and	𝑥G) (supplemented by	𝑋G) ), which prevents the recovery 

of the original information for low membership degrees. However, this is not essential, since the region of 
maximum MF values is the most informative in defuzzification. 
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In [3], it is shown that 
𝜇+$%(𝑣F) = 𝑚𝑎𝑥 D0.5, 𝜇+$(𝑣F)F	, 

 
where 𝑌G= = ⋂ 𝑋G) ∘ 𝑅$)A

)(! . 
The global relation defined on the family R𝑅$)T can be obtained by considering 𝑅) = ⋂ 𝑅$)#

$(! . 
In this case, the general rule of derivation will look like this: 
 

𝑌G = ⋂ ⋂ 𝑋G) ∘ 𝑅$)A
)(!

#
$(! = ⋂ 𝑋G) ∘ 𝑅)A

)(! 	.     (12) 
 
Since the intersection of fuzzy sets	𝑅) , is used in (12), m matrices of fuzzy relations are calculated in the output 

process instead of	(𝑛 × 𝑚) matrices when they are output based on rule (10), which dramatically reduces the 
amount of computation, simplifies the output procedure and leads to a more compact, and therefore more 
convenient model for practical use. 

In this case, the requirement of model adequacy in the sense of criterion (6) is satisfied. 
 
5. CONCLUSIONS 
The methodological aspects of applying the theory of fuzzy sets in the management of technical process of 

production of motor vehicle equipment, concerning the reliability, accuracy and stability of the obtained solutions, 
are considered. A method of formalizing fuzzy concepts based on an objective probabilistic approach is proposed, 
which allows to increase the reliability of modeling results. The basics of TP management in the production of 
vehicle equipment are proposed, including a method for identifying multidimensional technological objects using 
a conjunctive inference rule to build multidimensional matrices of fuzzy relations. 
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