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ABSTRACT
Physics concepts require mathematical frameworks to be understood and supported as an algebraic expression.
Mathematicians and physicists have introduced and explored a variety of algebras throughout history. One of these is Clifford
Algebra, often known as geometric algebra.

This work developed a general and useful method for deriving the operators of the kinetic energy of polyatomic molecules
using Geometric Algebra. The kinetic energy operator of a polyatomic molecule contains the vibrational and rotational
kinetic energy operators.

The gradients of vibrational coordinates form the exact vibrational kinetic energy operator of a polyatomic molecule. The
conventional methods utilized for obtaining these gradients can often be extremely laborious. However, the gradients for any
vibrational coordinate can be readily computed using geometric algebraic techniques. These gradients are the measuring
vectors. so, the components of the reciprocal metric tensor �푖� readily form that emerges in the exact internal kinetic energy
operators of polyatomic molecules. On the other hand, Finding the measuring vectors for the rotational degrees of freedom is
more difficult because the components of the total angular momentum operator are not conjugated to any rotational
coordinates. Nonetheless, using geometric algebraic methods without any restrictions on the number of particles in the
system, rotational measuring vectors for any geometrically defined body frame may be easily computed and this is what we
show in this paper.

Keywords: Geometric Algebra, kinetic energy of polyatomic molecules, measuring vectors, vibrational kinetic energy
operator, rotational kinetic energy operators.

1. INTRODUCTION
The purpose of the molecule's Hamiltonian operator must be to explore the molecular system's internal dynamics
in some way. In practical application, the kinetic and potential energy operators can be expressed in certain
coordinates [1]. If the Born-Oppenheimer approximation is valid, the potential energy operator can be easily
generated. However, in addition to vibration, the internal motion of the molecule also includes rotation. This
complicates theoretical explanations of the internal motion of the molecular system, even when employing
rectilinear coordinates [2].

This work aims to investigate a simple algebraic way to obtain the operators of the kinetic energy of polyatomic
molecules. These polyatomic molecules' precise intrinsic kinetic energy operators include a metric tensor. The
measuring vector expresses the elements of this metric tensor. Whereas the vibrational and rotational measuring
vectors that appear in the metric tensor for any geometrically defined coordinates of the shape and frames of the
body will be determined using geometric algebra [3].

2. FUNDAMENTALS OF GEOMETRIC ALGEBRA
Today Physics is blended with different mathematical formalisms, each introduced to handle some specific
problems. For example, the vector algebra developed by Gibbs, matrix algebra, and complex algebra [4].

These algebraic systems are combined into geometric algebra, which creates a cohesive mathematical language
with the strengths of each subalgebra while also introducing potent new features [5].

In the Clifford Algebra, another product is beneficial in addition to an exterior product. This multiplication
operator is denoted by a wedge (∧).

For that reason, vectors can be divided and multiplied by other vectors and by any element by any other element.
such that, instead of influencing their components, they can be directly manipulated.
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The geometric product for arbitrary vectors �� and �� are defined as

�� = � ∙ � + � ∧ � (1)

Here � ∙ � is the dot product and is a scalar expression. The expression � ∧ � is the outer product. The wedge
sign “∧ “ denotes the outer product expression. The outer product is neither a scalar nor a vector. It is a new
element called the bivectors [6].

And from vectors �� and �� we can define �� product as

�� = � ∙ � − � ∧ � (2)

from Eq.1 and Eq.2 we can see the commutative rule � ∙ � = � ∙ � , in conjunction with the anticommutative
rule � ∧ � =− �∧ � .

Two vectors' outer and inner products can be represented in terms of the geometric product, and vice versa

� ∙ � = 1
2
��+ �� (3)

and

� ∧ � = 1
2
(�� − ��) (4)

From Eqs. (3) and (4)

a� b� = b� a� ⇔ a� ∧ b� = 0 ⇔ a� b� = a� ∙ b� ⇔ a � ∥ b �

a� b� = − b� a� ⇔ a� ∙ b� = 0 ⇔ a� b� = a� ∧ b� ⇔ a � ⊥ b � (5)

The inner product a� ∙ b� is symmetric and notices that vectors a � and b� are orthogonal if and only if
a� b� =− b� a� .

The outer product a� ∧ b� is antisymmetric (and associative) and vanishes whenever the two vectors are collinear,
that is a � and b � are collinear (or linearly dependent) if and only if a� b� = b� a� .

A given vector in � -dimensional space can be represented by unit base vectors (e1 , e2 , e3 ,…, en ) . In other
words, any vector may be written as a linear combination of base vectors. A linear combination can also be used
to describe the bivector.

The concepts of scalar, vector, bivectors, and tri vector are 0−dimensional, 1−dimensional, 2-dimensional, and
3−dimensional space respectively. Now, the idea of � −degree will be expressed, showing the subspace size
where � refers to the degree order.

Scalars receive a grade of 0, vectors receive a grade of 1, bivectors receive a rating of 2, and trivectors receive a
grade of 3 . It continues as 4�ℎ degree, 5�ℎ degree, and so on in high-dimensional space. This notation is �-
degree for �-dimensional space. Degrees are shown in three dimensions in Table 1.

Table 1. Three-dimensional space degrees

� Base element Total

scalar 1 1

vector �1,�2,�3 3

bivectors �12,�23,�23 3
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tri vector �123 1

It's also critical to understand how many �-degrees exist in �-dimensional space. The binomial multiplier does
this

�
� = �!

�−� ! �! (6)

Here � is the dimension and � seems to be the base degree.

The overall number of algebra unit bases may well be calculated by adding the unit bases of all grade levels.

�=0
� �

�� = 2n (7)

The elementΑ in 퐶�� is represented with.

A =A = a0 + a11e1 +… + a1ien + a21e1e2 +… + a2ie1en +… + adie1e2……en (8)

Here � =� = 2� − 1 and 푖 =푖 = �
� for the real numbers ��푖 . Consequently, the vector space cln can also be

subdivided into (� + 1) as well as subspaces.

퐶�� = Λ0ℝn + Λ1ℝn + … + Λnℝn (9)

Every subspace seems to have a dimension n
k
.

The elements� of the Clifford algebra퐶�� in Eq (8) are called Multivector, and those ofΛpℝn, p -vectors.

In special, (0-vectors) are real numbers with dim (Λ0ℝn) = 1. (1-vectors) are vectors with dim (Λ1ℝn) = n and
Λ1ℝn has the basis e1, e2,…. , en . (2-vectors) are bivectors and have the basis e1e2, e1e3,…, e1en . Finally,
(�-vectors) with dim Λnℝn = 1, and has as basis e1e2……. . en , the (n-vectors) are called the pseudo scalars
of퐶�� .

Essentially arbitrary multi-vectors will just be denoted by non-bold upper case like � . �� Would be used to
describe p-vectors. A could be defined as any multi-vector�[7].

� = 〈�〉0 + 〈�〉1 +…+ 〈�〉� (10)

Where A p the p-vector portion of A, is the project of A ϵ 퐶�� into Λpℝn . Is called the operator of the
grade. Using this notation, it is possible to reframe the description of the inner and outer product or service in

terms of its degree. If a � and b � vectors, the inner product of a� ˩ b
�
produces a scalar 0

a � 1˩ b � 1 = a �� 0 (11)

The vector is obtained by projecting the vector onto the bivector�

a � 1 ˩ � 2 = a �� 2−1 (12)

The external product of vectors a � and b� can be expressed as

a � 1 ∧ b � 1 = ab� 2 (13)

This rule is applicable in general.

� s˩ � t = �� s−t If s ≤ t (14)
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� s˩ � t = 0 If s > t (15)

A s ∧ B t = AB s+t (16)

The inverse of the vector b is given by.

�−1 = �
�2 (17)

and it fulfills.

��−1 = �−1� = 1 (18)

It has been quite formal to introduce geometric algebra in such a basic way. However, an infinite number of
geometrical relations can be extracted by performing a straightforward algebraic operation on the laws. For
instance, multiplying any vector � by ��−� can be broken down into the components parallel (�∥ ) and
orthogonal (�⊥) to a given vector �. This leads to

���−1 = ���
�2

= �� �
�2

= 1
�2
� ∙ � + � ∧ � � = �∥ + �⊥ (19)

Similarly, any vector � can be decomposed to the parallel (�∥) and orthogonal (�⊥) to some given plane

� = � ∧ � as [6]

�∥ = � ∙ � �−1 (20)

�⊥ = � ∧� �−1 (21)

The reflection of � across the line � is acquired by sending � = �∥ +�⊥ to �−1 = �∥ −�⊥where �∥ = � ∙
� �−�. The mirror image �'of � for � is then.

b' = 푢�푢−1 (22)

We may represent the dot and outer products for the two vectors � and � regarding the angle between these
vectors �.

�� ∙ �� = 1
2
( �� �� + �� �� ) = | �� | |�� | 푐��� (23)

�� ∧ �� = 1
2
( �� �� − �� �� ) = 푖| �� | |�� |�푖�� (24)

The geometric product of unit vectors can be constructed using equations (23) and (24), yielding a useful method
for rotating a vector in a plane. The geometric product is expressed as follows if the unit bivector for the

longitudinal plane is � equal to the unit vectors (�� ) and (��).

�� �� = 푐��� + 푖 �푖�� = �푖� (25)

When a vector s is multiplied by the ��� exponential, also referred to as a two-dimensional rotor, a new vector
�' is created. This new vector is the previous vector rotated by an angle � in the � plane.

�' = � �푖� = �푐��� + �푖 �푖�� (26)

Since the unit bivector � ant commutes with every vector s in the e1e2 plane, the rotated vector can also be
expressed as:

�푐��� + �푖 �푖�� = �푐��� − 푖� �푖�� = �−푖� � (27)
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The vector derivatives of the coordinate qi for the spatial position vector xβare known as the gradients ���푖 in
geometric algebra.

���푖 = ����푖 (28)

The chain rule can be used to express the vector derivative operator ∇β in certain coordinates as

�� = 푖 (���푖)
�
��푖

� (29)

In the vector round, we use the subscript � to emphasize that these findings apply to several vector elements,
x1, x2,…

The computations for gradients are largely like those in standard scalar calculus. For instance, distributive vector
differentiation exists if� and� are vectors.

��(� +�) = ��� + ��� (30)

Furthermore, if γ = γ xβ seems to be a scalar-valued function, therefore

��(훾�) = (��훾)� + 훾��� (31)

If � = �( ��), the definitions of its divergence and curl are as follows

�푖��� = �� ⋅ � (32)

푐푢���� = �� × � (33)

By using geometric product definition, we can write

��� = �� ⋅ � + �� ∧�

=�� ⋅ � + 푖�� × � (34)

Consequently, the curl is the dual component, and the divergence is the scalar component of the vector derivative
of �.

Not just vectors and scalars but all elements� are produced for the vector derivative���

��� = �� ⋅ � + �� ∧� (35)

Eqs provide distributive vector differentiation. (30) and (31); however, as the operator of the vector derivative
doesn't genuinely commute with Multivector in practice, the product rule should be expressed as [5]

��(��) = ��
� �� � + ��

� ��� (36)

3. KINETIC ENERGY OPERATOR FOR POLYATOMICMOLECULAR.

A molecule is a group of two or more atoms that form the smallest identifiable unit into which a pure substance
can be divided and still retain the composition and chemical properties of that substance.

For a monatomic molecular, for example, an ideal gas (such as helium), the amount of internal total energy is the
potential energy and the translational kinetic energy (vibrational kinetic energy) possessed by the atoms of an
ideal gas as they bounce around randomly inside their container. Diatomic molecules (such as oxygen) and
polyatomic molecules (such as water) have additional rotational motions, so they have the kinetic energy of
rotation. To find the internal kinetic energy for the polyatomic molecular, we must know the vibrational and
rotational degrees of freedom.
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The kinetic energy operator for a single particle in generalized coordinates �1 , �2 , and �3 is typically obtained
by replacing the kinetic energy operator with the coordinate representation of the gradient operator.

�� =− ℏ2

2� ∇
2 (37)

where ∇ = 푖=1
3 ∇�푖� �

��푖

The coordinate gradients �푖 are considered the most often used coordinates, and even with traditional calculus
methods, they may be determined with comparatively minimal effort.

However, finding the formulation of an �-body system's kinetic energy operator in terms of translational and
shape coordinates, as well as the elements of total angular momentum, is more difficult. This work aims to
investigate a simple algebraic way to obtain the operators of the kinetic energy of polyatomic molecules [8].

The components of the reciprocal metric tensor, which are present in polyatomic molecules' internal kinetic
energy operators, can be expressed as the mass-weighted sum of the inner products of measurement vectors
connected to the molecule's nucleus.

When it comes to vibrational degrees of freedom, the measurement vectors are just the vibrational coordinates'
gradients for the nucleus's position. These can be computed via direct vectorial differentiation or by varying the
relevant coordinate during the particle's path.

Finding these vectors for the rotational degrees of freedom is more challenging because there is no conjugation
between the components of the total angular momentum operator and any rotational coordinates. Nonetheless,
the rotational measurement vectors for any geometrically defined body frame may be easily computed using
geometric algebraic methods, and there is no restriction on the number of particles in the system.

The non-relativistic kinetic energy operator �� of an � -atomic molecule is given as follows if the Born-
Oppenheimer approximation holds:

�� =− ℏ2

2�� �
�∇�

2� (39)

Where �� is the mass of the atom � and ∇� is the vector derivative (gradient) operator concerning the spatial
position Y� of the nucleus � . Specifically, it is assumed that every integration is carried out throughout the
volume element �� = �3�1 �3�2 … �3�� . But for many applications, just the molecule's internal state
matters. If we represent ∇� in three Cartesian coordinates �푖 = �푖 ∙ � (푖 = 1,2,3) of the center of mass, we can
easily separate the translation from the molecule's internal motions [9].

� = �=1
� ����

�� (40)

(where� is the molecule's mass, and it's written asΜ = �
Ν��� , and �1,�2,�3 is an orthonormal standard

space-fixed frame),3�− 6 shape coordinates �푖 , and three coordinates for rotation�푖 as

∇� = 푖=1
3 (∇� �푖)

�
� �푖

� + 푖
3�−6 (∇�� �푖)

�
��푖

+ İ
3 (∇� �푖)

�
��푖

�

= 푖=1
3 (

��
�
�푖)

�
� �푖

� + 푖
3�−6 (∇�� �푖)

�
��푖

+ İ
3 (∇� �푖)

�
��푖

� (41)

Given that the shape and rotational coordinates are translationally invariant,

�∇�� �푖 = 0 (42)

�∇�� �푖 = 0 (43)
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by replacing Eq. (39) with Eq. (41), yields

�� =− ℏ2

2� 푖=1
3 �2

��푖
2� +�� (푖��) (44)

where �� (푖��) denotes the kinetic energy operator portion that is only dependent on the internal coordinates. It
might be stated as

�� (푖��) =
− ℏ2

2
�
��푖

+ 1
�
��
��푖

� �푖,�� �
���
− 1

2
� �푖,�� �푖

� ��
�

− ℏ
2
�(�푖,,��)�푖

� �
���
− ℏ

2
�
���

+ 1
�
��
��푖

�(�푖,��)��
�� (45)

In the orthonormal body-fixed frame �1� , �2� ,�3� , the rotation �1� = ���푖� is connected to the standard

laboratory-fixed frame by �푖
� = �� 푖 ∙ �

� , which is the 푖th (푖 = 1,2,3) scalar component of the dual� � =− 푖�� of the
internal angular momentum operator[9].

�� =− 푖ℏ �
�−1��� × ∇�� (46)

where �� = �� −� is the center of mass position of the nucleus � , and the 푖 is the unit trivector.

The mass-weighted reciprocal metric tensor � is composed of the vibrational, Coriolis, and rotational elements,

denoted as � �푖,�� , �(�푖,��), � �푖,�� , and they are only dependent on the shape coordinates[10].

The coordinate transformation's Jacobian absolute value, denoted by �, is provided by

� = ��� � −1 2 sin� ���
−3 2� (47)

where � is the Euler angle between �3 and �3� .

Instead of utilizing the volume-element �� = ���1 ��2 ..., if one wants to integrate using the volume-
element ��� =���1 ��2…, the equivalent kinetic energy operator ���

(푖��) is provided as

���
(푖��) = �1 2�−1 2�� (푖��)�1 2�−1 2 (48)

3.1 Vibrational Degrees of Freedom
When Eq. (39) is replaced with Eq. (41) the vibrational elements of the mass-weighted reciprocal metric tensor
for any vibrational coordinates �푖 are obtained as follows [10]:

� �푖,�� = �
� 1
��

� �
�

(�푖) ⋅ �
�

�� = �
� 1
��

� ∇��푖 ∙ ∇��� for (푖, � = 1,2,…, 3�− 6) (49)

The gradients ∇��푖 are produced by calculating the vector derivative of the coordinate �푖 for the position vector
of the nucleus � , and the vibrational coordinates are typically expressed simply as functions of the nuclear
position vectors ��, i.e.,

∇��푖 ≡ ∇��
�푖 = ����푖 (50)

or else they can be taken out of the way the coordinate �푖 varies along the particle -path ��(�).

�푖� = �
����� (�) ∙ ∇��푖 (51)
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(�푖� =
��
��, and � is some scalar parameter).

3.2 Rotational Degrees of Freedom

Since the elements of the angular momentum operator �� are not conjugated to any rotational coordinate �푖, it is
more challenging to determine the rotational and Coriolis parts of the kinetic energy operator. First, take the
derivative of any arbitrary scalar function� for the Euler angles �1 = �, �2 = �, and�3 = �. Now

ℏ �
��푖
� = �푖 ∙ �

�� (52)

where �1 = �3 , �2 =
�3×�3'

�3×�3'
, and �3 = �3' in agreement with the parametrization � =

�푖��3 2�푖��1 2�푖��3 2 = �푖��3' 2�푖��1' 2�푖��3' 2 = �푖��3 2�푖��2 2�푖��3' 2

When body-fixed axes ��
' are used to express �1 , �2, and �3 respectively, the equivalence

ℏ (∇��푖)
�
��푖

= ���
' ∙ �푖� (∇��푖)�

�
� (53)

The rotation angle's gradient can be expressed as

(∇��푖) = ∇��(푖) ∙ ��(�) (54)

where the vector �(푖)represents the reciprocal of the hybrid axis �푖, meaning that ( �(푖) ∙ �(푖) = 1 if 푖 = � and
0 otherwise), and �� � is the body frame's rotational velocity due to particle � 's displacement (evaluated at
point �).

�� � = �3� ∙ ∇��+ �2� ∙ ∇�� + �3' � ∙ ∇��

=− 1
2 �

3��
'� � ∙ ∇���

' = 1
2 �

3��
'� × � ∙ ∇���

' (55)

Following the insertion of Eq. (54) into Eq. (43) and the summation of both sides over index 푖,

ℏ (∇��푖)
�
��푖

= �
3 ∇�� � ∙ ∇��푖

' ∙ ��
' � �� (56)

On the right side of Eq. (56), the indices 푖, �, ��� � are in the cyclic order. The gradient operator ∇�, multiplied
by ℏ, solely dependent on rotation, includes the left-hand side of Eq. (56).

The rotational g-elements can thus be expressed as follows by introducing Eq. (56) into Eqs. (39) and (41) and
selecting the terms proportionate to � ��

� �푖�� = �
� 1
��

� �
�

(�푖) ∙ �
�

(��) (57)

and the Coriolis �-elements as

� �� �푖 = �
� 1
��

� �
�

�� ∙ ∇��푖 for (i = 1,2,…, 3N − 6) and � = (1,2,3) (58)

where

�
�

�� = ∇� � ∙ ∇��푖
' ∙ ��

' (59)
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is the rotational measuring vector associated with the nucleus �: and �th component of the angular momentum
operator �� .

If we have two directions � and � which are defined by

� = �푐���� (60)

� = ������ (61)

The internal coordinates can affect the coefficients 푐� and �� , where � × � ≠ 0 , and these vectors are not
collinear �푐�� = 0 and ���� = 0.

The axes of the body are represented as [11]

�3' =
�
� (62)

�2' =
�×�
�×� (63)

�1' = �2' × �3' (64)

and the measuring vectors as

��
�1 =−

푐��2
' + ���⋅�2

' ∇�푐��

� (65)

��
�2 =

푐��1
' + ���⋅�1

' ∇�푐��

� (66)

��
�3 = 1

�×� � ⋅ �3' 푐��2' + ��� ⋅ �2' ∇�푐�� − � ���2' + ��� ⋅ �2' ∇���� (67)

Since the above formulas refer to any choice for � and � , the rotational measurement vectors can be easily
obtained using the current system by simply defining the body's axes (or the � and � directions). As a result, the
current method which is mean geometric algebra tends to be a useful technique for determining the rotational
vibrational operator of the kinetic energy in situations where it is beneficial to reduce any of the Hamiltonian
vibrations and rotation coupling conditions [12].

4. RESULTS AND CONCLUSIONS
The goal of Clifford and many others was to make geometric algebra useful in a wide range of scientific fields.
because certain issues may have unexpected solutions when algebra is applied. In this context, it is important to
highlight David Hestenes' efforts to elevate geometric algebra from algebra in physics to a science language.

This work reveals that a general and useful technique for obtaining rotational measuring vectors �
�

�� using
geometric algebra has been developed. It provides its internal products with other rotational measuring vectors as
well as with vibration gradient coordinates, the vibration operator of kinetic energy, and particles rotating at
polyatomic speeds.

The findings of this research will enable us to use Clifford Algebra to write the energy expressions of polyatomic
molecules much more compactly, which will make our computations easier.

If these operators are real, then everything can be explained in terms of the motions of polyatomic molecules. By
using these operators, we can interpret the results of applying mathematics to physics.
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Finally, we can see that Clifford's Algebra enables us to better grasp nature and its realities. We can harness the
power of mathematics for physics by employing this algebra. While Clifford Algebra is useful in robotics and
dynamical systems, we now know that it also holds in the enigmatic world of quantum physics.
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