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ABSTRACT 

 
This article focuses on investigating the utilization of deep convolutional neural networks for segmenting railway 
tracks. Deep learning, which aims to simplify data processing by emulating human intelligence on computers, 
plays a significant role in this regard. Railway tracks are widely recognized for their importance in railway 
transportation. Consequently, ensuring track integrity requires thorough surface scanning. However, considering 
the extensive expanse of railway tracks, manual scanning proves to be a challenging and time-consuming task. 
Railway track segmentation serves as a fundamental step in identifying track defects, enabling easier detection by 
extracting tracks from surrounding images. This article discusses various studies conducted in this field and 
provides insights into the advantages offered by each approach. 
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1. INTRODUCTION 

 
Defects in railway systems can arise from a single flaw or from compound flaws. Compound flaws are 

more complex and encompass multiple elements, making their detection and evaluation more challenging than 
that of a single flaw (Sresakoolchai, Kaewunruen, 2021) [1]. Currently, rail failures can generally be categorized 
into three broad groups: 

1. Defects originating from manufacturing flaws in the rails - a classical example being the head-check 
defect, typically caused by hydrogen-induced cracking in the rail head. 

2. Defects resulting from improper handling, installation, usage, or damage. An example of this is the wheel 
burn defect caused by skidding, which is one of the common rail failures. 

3. Defects stemming from the fatigue degradation of rail steel over time, such as transverse cracks or 
buckling. 

The most frequently encountered types of rail defects are as follows: internal nuclear defect in the rail head, 
central nuclear defect in the rail head, external nuclear defect in the rail head, crack in the bolt hole, crack beneath 
the bolt hole (Xu, Zhao, Yu, Wang, & Shen, 2020) [2]. 

Localized or extensive wearing of the rail surface poses a significant risk to train safety, potentially leading 
to derailment. Flaws occurring at the rail connection points, particularly in bolt holes, and longitudinal cracks in 
the rails are factors that affect the integrity of the rails and contribute to crack propagation. Large cracks, in 
particular, can cause rail fracture or excessive deformation. Isolated transverse fractures resulting from rail defects 
have a low likelihood of causing derailment. Even continuously welded rails subjected to thermally induced high 
forces can experience transverse fractures, typically not exceeding 30 mm in winter months and even less at other 
times. However, transverse fractures ultimately lead to loss of load-bearing capacity and induce a tendency for 
wheel climbing. This results in deformation of the rail movement, leading to misalignment of rail ends and an 
increased risk of derailment. 

Traditionally, the detection of rail surface defects has relied on manual inspection. However, the manual 
inspection method requires significant resources and human power while exhibiting low detection effectiveness. 
Consequently, various defect detection methods have been developed. These include eddy current coil detection 
(Song, Yamada, Shitara, & Takemura, 2011) [30], detection using ultrasonic surface waves (Chen, Wang, He, Yu, 
Zhang, & Wang, 2022) [3], MEMS gyroscope sensors (Boronakhin, Podgornaya, Bokhman, Filipenya, Filatov, 
Shalymov, & Larionov, 2011) [4], magnetic induction (Antipov, Markov, 2019) [5], and image processing (Liang, 
Zhang, Liu, He, & Zheng, 2018) [6]. Machine learning, which has been widely utilized recently, is also a non-
destructive inspection method (Sresakoolchai, Kaewunruen, 2021) [1]. However, despite the improvement in 
detection accuracy achieved by these methods, non-destructive detection may not always yield precise results and 
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does not guarantee 100% accuracy. Therefore, non-destructive detection results should be verified with alternative 
methods or confirmatory tests. 
 
2. RELATED WORKS 

One of the crucial issues in ensuring passenger safety is the periodic inspection and monitoring of railway 
tracks (Gibert, 2016) [7]. The inspection of the railway line based on computer vision techniques and the automatic 
detection of errors on the railway line using image recognition have increased passenger safety by reducing human 
errors and allowing more frequent inspections (James, 2018) [8]. Regulations in the United States require frequent 
inspections of railway tracks, typically once or twice a week (Gibert, 2016) [7]. Traditional railway inspection is 
carried out by railway personnel walking along the tracks or using a low-speed rail inspection vehicle (Gibert, 
2016; James, 2018) [7-8]. 

However, research on the automated inspection of tracks has been conducted for approximately 20 years 
(Zahran and Al-Nuaimy, 2004; Chan and Burrow, 2009; Guler, 2014; Giben, Patel, and Chellappa, 2015; Zhao, 
Mittal, and Rao, 2017; James, 2018; Guo, Qian, Wu, Leng, and Yu, 2021; Meng, Kuang, Ma, and Wu, 2022) [9-
13, 8, 14-15]. The first successful application of Fully Convolutional Networks (FCNs) was performed by LeCun 
et al., and a architecture called LeNet5 was developed (Lateef and Ruichek, 2019) [16]. Subsequently, Alex 
Krizhevsky developed a deep convolutional neural network called AlexNet. AlexNet is a deepened and extended 
version of the LeNet neural network (Lateef and Ruichek, 2019) [16]. After adjusting the structure of AlexNet, 
ZFNet was introduced (Zeiler, Fergus, 2014) [17]. 

Before the era of deep learning, many methods similar to partial differential equation-based methods were 
used. For example, the Fully Convolutional Network (FCN) proposed by Long, Shelhamer, and Darrell (2015) 
[18] achieved an improvement of 20% relative to the average IU of 62.2% for PASCAL VOC, NYUDv2, and 
SIFT Flow segmentation while taking less than 1/5 of a second for inference on an image. 

Giben (2015) proposed deep convolutional neural networks (DCNNs) for visual inspection on grayscale 
images. This neural network, designed using semantic segmentation and material classification, was tested to be 
more accurate and resilient to noise compared to manually designed learning machines. The network was run in a 
feed-forward manner and outperformed other networks. Additionally, the proposed network achieved 93.35% 
material accuracy using 10 material classes [12]. 

Segmentation involves assigning a label to each pixel to divide the image into different regions (Qi, 2016; 
Zhang, Song, Xu, He, Niu, and Yan, 2020) [19]. Fully convolutional neural networks have been further developed 
for segmentation, utilizing various methods for better extraction of contextual information and optimization of 
obtained information (Zhang, Song, Xu, He, Niu, and Yan, 2020) [20]. Existing networks such as AlexNet, 
GoogLeNet, VGG, and ResNet have been adapted and enhanced for segmentation, with improvements made 
(Long, Shelhamer, Darrell, 2015; Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, and Garcia-Rodriguez, 
2017) [18], [21]. 

 Most fundamental segmentation networks use an encoder-decoder structure that combines feature 
extraction and task layers to perform segmentation (Li, Zhu, Yu, Guo, and Wan, 2020) [22]. 

Various methods are used in many studies in the literature. Some of these deep convolutional neural 
networks include MobileNet and YOLOv3 (Yuan, Chen, Liu, Lin, and Luo, 2019) [23], YOLOv3 (Yanan, Hui, 
Li, and Hang, 2018) [25], VGG19 (Kim, Lee, and Han, 2020) [26], and SegNet based on the backbone network 
(Liang, Zhang, Liu, He, and Zheng, 2018) [6]. 

These neural networks also employ different prediction techniques. The YOLOv3 algorithm uses 
dimensional clustering to accurately and quickly detect targets (Yanan, Hui, Li, and Hang, 2018) [25], while the 
MOLO model can predict rail surface defects using a single-stage regression network with reduced computation 
and a multi-scale structure (Yuan, Chen, Liu, Lin, and Luo, 2019) [23]. 

Defects on the rail surface are a significant factor affecting operational safety. Unfortunately, the accuracy 
of rail surface defect detection systems is limited, and image processing methods have not been fully tailored for 
railway lines. The lack of existing neural networks poses challenges in detecting blurry rail edges. The RGBNet 
rail boundary guidance network proposed by Wu, Qin, Qian, Guo, Wang, and Jia (2022) aims to overcome these 
issues. This architecture, which effectively utilizes the complementarity between the rail surface and rail boundary, 
adds high-level rail surface object information through progressive fusion. The system combines precise edge 
features at different layers with rail surface features to predict the rail surface. Additionally, this architecture was 
developed without loading models from pre-trained data [24]. 

In the study conducted by Li, Zhu, Yu, Guo, and Wan (2020), a deep multi-task learning-based algorithm 
was used for rail segmentation. This network can automatically identify alarm zones on the rails. The escape point 
segmentation and SEB modulation module were used to train this network. For training, 5,400 images were 
collected from three different sources, and 1,000 images were used for testing [22]. 
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Table 1. Studies in the literature 
 

There are very few articles specifically examining rail surface segmentation in the literature. Some of the 
conducted studies are shown in Table 1. Therefore, it is believed that the study conducted within the specified 
scope will contribute to the literature. 
 
3. CONCLUSION 

This article presents significant advancements in the segmentation of railway tracks using deep learning. 
The conducted studies focused on the segmentation of rails and connection elements using deep learning 
techniques with data collected from various sources. Many of these studies primarily addressed rail defects. 
However, our study aims to train deep neural networks using data gathered from the internet. The importance of 
our research lies in its direct applicability to railway tracks. 

The capabilities of deep neural networks in deep learning enable improvements in rail segmentation. With 
these advancements, we anticipate an increase in the success rate of rail segmentation. We believe that significant 
progress can be achieved in the segmentation of railway tracks by employing deep neural networks, leading to 
enhanced efficiency.  

In conclusion, railway track segmentation is a crucial method for railway management, safety, and 
efficiency. This approach enables railway operators to engage in better planning, utilize resources more effectively, 
and enhance the performance of railway tracks. 
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