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ABSTRACT 
 
In this study Geometric Algebra was used to create a general and practical method for obtaining the operators of the kinetic 
energy of the molecular vibration-rotation of polyatomic molecules. On the other hand, these polyatomic molecules' precise 
intrinsic kinetic energy operators include a metric tensor. The elements of this metric tensor were expressed as the mass-
weighted sum of measuring vector inner product vectors compatible with the molecule's nucleus. Whereas, the vibrational and 
rotational measuring vectors that appear in the metric tensor for any geometrically defined coordinates of the shape and frames 
of the body were easily determined using geometric algebra. The current method (geometric algebra) generates molecular 
vibration-rotation kinetic energy operators that are in perfect agreement with earlier studies. 
Finally, we have used the Lagrangian Formulation where the component of kinetic energy was expressed in the form of 
generalized velocities.Using geometric products, we discovered the relation between the covariant metric tensor and the 
contravariant metric tensor. 
 
Keywords: Geometric Algebra, Operator of the kinetic energy, covariant metric tensor, Rotational measuring vectors, 
Vibrational measuring vectors 
 

1. INTRODUCTION 

Algebra is the branch of mathematics that deals with general statements of relations, utilizing letters and 
other symbols to represent specific sets of numbers, values, vectors, etc., in the description of such 
relations. There are basic rules by which an expression can be algebraic. These basic rules are  
 
𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 Distributive property 

 
𝑎(𝑏 + 𝑐) = (𝑏 + 𝑐) Commutative property 

 
𝑎(𝑏𝑐) = 𝑏(𝑎𝑐) = 𝑐(𝑎𝑏) 
 

Combination property 

𝑎 + 0 = 𝑎, 𝑎 ⋅ 1 = 𝑎 Identity property 
 

𝑎 + (−𝑎) = 0, 𝑎 ⋅ 1𝑎 = 1 Inverse property 
 

Where	𝑎, 𝑏 and 𝑐 are arbitrary numbers. 
Geometric algebra is a numerical technique that simplifies the description of geometric concepts and 
procedures [1]. Geometric algebra also called "Clifford algebra" and sometimes called "hyper complex 
numbers" to describe a generalization of the complex number and the quaternions, was first introduced 
by William Kingdon Clifford in 1878, in his article "Grasman's Application of Extended Algebra" in 
the American Journal of Pure and Applied Mathematics [2]. 

Clifford was much more affected by Grassmann's research and utilized it as a starting point for 
establishing geometric algebra and combining external and internal products into a distinct engineering 
product, a new product form [3]. 

Geometric algebra is also an algebra because it provides the basic rules for algebra. Geometric algebra 
makes simple definitions with some special rules used for the product of vectors. It is an algebra that 
extends real number systems and is an ideal language for physics, often used in mathematical physics. 
Clifford Algebra contains the elements of area and volume, thanks to the basic elements it contains. 
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The expression of geometric algebra, 
	𝑎...⃗ 	𝑏..⃗ = 	𝑎...⃗ ∙ 	𝑏..⃗ + 	𝑎...⃗ ∧ 	𝑏..⃗  (1) 

Here  	a..⃗ ∙ 	b...⃗    is the dot product and is a scalar expression. The expression 	a..⃗ ∧ 	b...⃗  is the outer product. 
The outer product expression is denoted by the wedge sign “	∧ “. The outer product is neither a scalar 
nor a vector. It is a new element called the bivectors. 
Clifford Algebra has three orthogonal unit base vectors	�̂�!, �̂�", �̂�#. Since these unit basis vectors are 
perpendicular to each other,	�̂�!

" = �̂�"
" = �̂�#

" = 1 . 
The oriented plane area of the square with sides 	e!	and 	e"	 is expressed by the product	𝑒!𝑒", that is a 
new type of quantity known as a bivector.  As shown in figure 1. Write for short 	e!	" = 𝑒!𝑒" . 

 
 
 
 
 

 

Figure 1. Express the Bivectors 

1.1. Relations and Geometric Transformations 

In geometrical algebra, every geometric point being expressed as a vector, and each geometric parameter 
may be explained in terms of its exceptional qualities without the need of any external coordinate frames. 
Any vector	𝑠	..⃗ , for instance, may be divided into parallel and orthogonal components. Figure 2. Depicts 
the computation of the component of 𝑠	..⃗ in the direction of 	𝑟	..⃗ 	when the two vectors form an angle of 	0 <
θ < 180 degrees. 
 
 

 
 

 

 
Figure 2. Decomposition of 𝑠	##⃗  vector to components along and perpendicular to a vector 	𝑟	##⃗  

The parallel variable is the scalar multiple of the unit vector	 %|'|.  
	s∥ 	= 	 |s| cos θ

"
|$|
	= 	 |s||r| cos θ "

|$|!
   (2) 

In other words, the parallel component s∥ is the scalar product s ∙ r = |𝑠||𝑟| cos θ	 multiplied by the 
vector r)!	= '

|'|!
 , also known as the vector r⃑	 inverse. As a result 

s∥ 	= 	 (	s ∙ r)	
%
|'|!

			= 	 (	s ∙ r	)	𝑟)!	   (3) 

The perpendicular component 𝑠* is defined as the difference 

s* = s − s∥ = s − (	s ∙ r	)	𝑟)! = (sr − 	s ∙ r	)	r)! 	= (s ∧ r	)	r)!	   (4) 

 
The reflection of 𝑠 across the line u as shown in figure 3(a). Is acquired by sending 𝑠 =	𝑠∥ + 𝑠*  to 𝑠+ =
𝑠∥ − 𝑠*	 where	s∥ = (s ∙ u)u)!. The mirror image u+of u for s is then 

s+ = usu)!   (5) 

We may represent the dot and outer products in Eq (2) in regards of the angle between both the vectors	𝜃. 
	s..⃗ ∙ 	r..⃗ = 	 !

"
	(	s..⃗ 	r..⃗ + r⃗	s..⃗ ) 				= 	 |	s..⃗ |	|r⃗	| 	cos θ   (6) 
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	s..⃗ ∧ r⃗ = 	 !
"
	(	s..⃗ 	r..⃗ − r⃗	s..⃗ 	) 		= 	i|	s..⃗ |	|r⃗	| sin θ		   (7) 

Eqs. (6) and (7) how to construct the geometric product of unit vectors, which results in a useful formula 
for rotating a vector in a plane. If the unit bivector for the longitudinal plane the unit vectors 	s..⃗  and 	r..⃗ 		is 
𝑖 then the geometric product is represented as [4] 

	s..⃗ 	r..⃗ = 	 cos θ 	+ i	 sin θ 	= 	 e,-   (8) 

The e,- exponential, commonly known as a two-dimensional rotor. 
As seen in figure 3(b), multiplying a vector s by the rotor produces a new vector	s+, which is the old 
vector rotated in the 𝑖 plane by the angle	𝜃.  

s+ = 	s	e,- 	= 	s cos θ 	+ 	s𝑖	 sin θ					   (9) 

Since the unit bivector 𝑖 ant commutes with every vector s in the e!e"	plane, the rotated vector can also 
be expressed as: 

s cos θ 	+ si	 sin θ 	= 	s cos θ 	− 	is	 sin θ 	= 	 e),-	s   (10) 

Furthermore, we have 
cos θ 	+ 	i sin θ 	= 	 (cos -

"
+ 	i sin -

"
	)"   (11) 

And the rotated vector also has the form 𝑦)!  as where  
y = 	 e,- ".      And     		y)! 	= 	 e),- ".    (12) 

The same Eq (8) applies to the rotation of any Multivector 𝐵 (a vector, a bivector, etc., or any 
combination thereof). 
If Multivector 𝐵 rotates across a bivector angle	φ , then 	𝐵+	is obtained by sandwiching the multivector 
𝐵 between rotation plane exponentials. 

𝐵+ =	𝑒)/
0
". 	𝐵			𝑒/

0
".  (13) 

 
 

 
(a) 

 
(b) 

Figure 3. (a) Reflection of 𝑠	along 𝑢 ;( b) Rotation of vector	𝑠 in the plane	𝑖 

   
 
 

1.2. Internal Coordinate Gradients 

In geometric algebra, the gradients 𝛻1𝑞/ are the vector derivatives of the coordinate 𝑞/ with respect to 
the spatial position vector 	x2 , that is 

𝛻1𝑞/ =	𝜕3"𝑞/ (14) 

The vector derivative operator ∇2 is expressed in some coordinates using the chain rule as 

𝛻1 =	P(𝛻1𝑞/)
𝜕
𝜕𝑞//

 (15) 
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Where we utilize the subscript 𝛽 in the vector round as to underline that these conclusions apply to 
several vector elements x!, x", … . 
Much of the calculations for gradients resemble those of the usual scalar calculus. For example, If F and 
G are vectors, the vector differentiation is distributive 

𝛻1(𝐹 + 𝐺) = 	𝛻1𝐹	 +	𝛻1𝐺 (16) 

Furthermore, if γ = γXx2Y seems to be a scalar-valued function, therefore 
𝛻1(𝛾𝐺) = 	 (𝛻1𝛾)𝐺	 +	𝛾	𝛻1𝐺 (17) 

If 𝐹 = 	𝑓(	𝑥1), the definitions of its divergence and curl are as follows 
𝑑𝑖𝑣1𝑓 = 		𝛻1 ⋅ 𝑓	 (18) 

By using geometric product definition we can write 
𝛻1𝑓 = 	𝛻1 ⋅ 𝑓	 +	𝛻1 ∧ 𝑓 = 𝛻1 ⋅ 𝑓 + 	𝑖𝛻1 × 𝑓 (19) 

As a result, the scalar component of the Eq (19) is the divergence, and the other component is the curl. 
Because the last form is restricted to three dimensions, it is better to conceive of the curl as the bivectors 
element of the vector derivative. [5]. 
In general, the vector derivative	𝛻1𝐹	 , F is constructed for all elements	𝐹, not only vectors and scalars 

𝛻1𝐹 = 	𝛻1 ⋅ 𝐹	 +	𝛻1 ∧ 𝐹 (20) 

Eqs (16) and (17) provide distributive vector differentiation but, in practice, the operator of the vector 
derivative doesn't quite actually commute with Multivector, so the product rule should be phrased as 

𝛻1(𝐹𝐺) = 	𝛻1̀�̀�	𝐺	 +	𝛻1̀𝐹	�̀�	 (21) 

2. THE SCHRODINGER EQUATION FOR MOLECULES 

Materials are composed of atoms, which also are composed of electrons and nuclei. To the highest extent 
imaginable, the wave function which represents molecule with 𝑁 nuclei and 𝑃 electrons characterizes 
the molecule's status. When studying the interior motions of molecules, we must consider the 
movements of a substantial amount of charged particles related to each other. All molecular 
characteristics, such as energy state and molecular geometry, may potentially be determined using the 
wave function that exists in the Schrodinger equation. 

XΤd + VdYΨ = ΕΨ (22) 

Where Τd is  the operator of the kinetic energy, Vd  is the operator of the potential energy, Ψ  is the wave 
function and Ε  is the energy. 

When the Schrodinger  equation is solved, many wavefunctions Ψ𝑛 and their related energies Ε4	are 
obtained, which adequately characterize the movements of the constituent particles of the molecule. 
Every Ε4 is an energy amount which the molecule can still have, also known as a level of energy that 
the molecule may hold [1]. 
If the required boundary conditions are considered. The operator of the kinetic energy	Τd  and  the operator 
of the potential energy	Vd	both are affected by the locations of electronΧ56!, Χ56", … , Χ567	s   as well as 
the locations of nuclei Χ!, Χ", … , Χ5	. 
If electrons and nuclei are represented as points charges and relativity influences and spin are ignored, 
the operator of the potential energy and the operator of the kinetic energy can be represented as 

	Τd = −
ℎ"

8𝜋"
P

∇1
"

𝓂1

567

18!

 
(23) 

Vd =
𝑒"

8𝜋𝜖9
P P

Ζ1	Ζ:
oΧ1 − Χ:o

567

1;:

567

1

 
(24) 
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Where ∇1 denotes to the vector derivative operator with respect to the position Χ1, ℎ  represents Planck 
constant, 𝓂1 is the mass of the particle 𝛽, 𝑒  is the unit charge  (𝑒	 = 	1.6019 × 10)!<∁) , Ζ1	 is the 
charge number of the particle 𝛽(it is −1 for an electron) and (𝜖9 = 8.854 × 10)!"𝒯)!𝐶"𝑚)!) is the 
vacuum permittivity. 

2.1. Approximation of Born-Oppenheimer 

Analytical solutions to the Schrodinger equation exist just for two-body systems such as that of the 
hydrogen atom, and it is complicated to solve it analytically for molecules containing more than two 
particles; nevertheless, some assumptions must have been made in order to identify approximate 
solutions.The Born-Oppenheimer approximation is one of these simplifications. 

The effect, the electrons' motion can be interpreted as if the nuclei were stationary in space, and the 
electronic Schrodinger equation can be solved separately for each value of the nuclear coordinates. That 
is, there is an approximate wavefunction that describes electron motions independently of a second 
wavefunction that describes nuclei motions. 

The Schrodinger equation, which is dependent on both nuclei and electron coordinates, is written as 
XΤd= + Vd=YΨ= + XΤd4>?@ + Vd4>?@YΨ4>?@ = Ε=Ψ= + Ε4>?@Ψ4>?@ (25) 

The mathematical analysis of nuclear movements is simplified through separating nuclear movements 
into vibrational, rotational, and translational modes.We may get the translational, vibrational, and 
rotational modes and energies of the molecule under inquiry by resolving the Schrodinger [1]. 

XΤd4>?@ + Vd4>?@YΨ4>?@ = Ε4>?@Ψ4>?@ (26) 

2.2. The Representation of Coordinates 

Each atom in a group of	𝑁 atoms that are just not related to each other can move around freely in three 
dimensions. To characterize their movement, 3𝑁 coordinates are essential .To describe the molecule's 
shape, a system of 3𝑁 − 6	translationally and rotationally invariant internal coordinates	𝑞/  is utilized. 
Three translationally invariant  angles of Euler 𝜒, 𝜃, 𝜙, may be utilized to determine the rotation of the 
entire molecule.The angles of the Euler have been used to connect the orientations of many an 
orthonormal fixed axis system of molecule {𝜐!+ , 𝜐"+ , 𝜐#+ }	to a normal orthonormal space-fixed frame 
{𝜐!, 𝜐", 𝜐#}. 

𝜐/+ = 𝑅A𝜐/𝑅 (27) 

Where R is the rotor that was described by 

𝑅 = 𝑒/BC# "⁄ 𝑒/EC$ "⁄ 𝑒/FC# "⁄ = 𝑒/BC#% "⁄ 𝑒/EC$% "⁄ 𝑒/FC#% "⁄ = 𝑒/FC# "⁄ 𝑒/E4! "⁄ 𝑒/BC#% "⁄  (28) 

When 𝑛"	is determined by the formula 

𝑛" =
𝜐# × 𝜐#+

|𝜐# × 𝜐#+ |
 

(29) 

The position of the molecule may be parametrized using three Cartesian coordinates. The location of 
the molecule can be parametrized by three Cartesian coordinates    

𝜲 = P
𝑚1𝛸1
𝛭

G

18!

 
(30) 

From Eq (30), Μ is the molecule's mass, and it's written as 

Μ =P𝑚1

5

1

 
(31) 

The chain rule describes the vector derivative operator ∇1 as 

∇1=P𝑒1
(I&)

#5

/

𝜕
𝜕𝑞/

 
(32) 
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From Eq (32), 𝑞/ denotes the internal coordinates, which are understood that  
𝑞#K)L = 𝜙, 𝑞#K)M = 𝜃, 𝑞#K)# = 𝜒	 

 
 

𝑞%&'( = 𝛸),						𝑞%&') = 𝛸(	,						𝑞%& = 𝛸% 
 

(33) 

𝑒1
(I&) is the measurement vector that corresponds to the nucleus 𝛽 and coordinates  𝑞/of the molecule. 

𝑒1
(I&) = 𝛻1𝑞/ (34) 

The term "measuring vector" 	𝑒1
(I&)comes from the fact that the vector  takes the measure of the rate of 

change in the coordinate 𝑞/XΧ1Y for any given rate of change NO"
NP

 of the nuclear position Χ1 as [6]  

𝑑𝑞/
𝑑𝑡

=P𝑒1
(I&)

G

1

⋅
𝑑𝛸1
𝑑𝑡

 (35) 

By geometric algebra, internal coordinates may be discussed in terms of nucleus position vectors. Their 
gradients can then be obtained with algebraic expressions by modifying the atomic position vectors. 
After that, we'll utilize this knowledge to characterize the operator of the kinetic energy of a polyatomic 
molecule. 

Each fixed location vector for body can be rotated to the fixed location vector for space as seen from 
Eq (28) ,if  we have a fixed location vector for body 𝑠1

+  is rotated to the fixed location vector for space 
	𝑠1 = Χ1 − 𝚾  by 

𝑠1 = 𝑅A𝑠1
+𝑅 (36) 

Where 𝑅 is the rotor that is influenced by the axes of body. 
Each option of the body's axes provides a reference orientation in which the body's axes coincide with 
the fixed frame of space. The change of the molecule orientation for a given shape is equivalent to the 
change in the orientation of the body's axis, but it is independent of any specific option of body frame. 
But, if the molecule is deformed (that is if the shape in the initial and final is changed), the rotation of 
the molecule would be determined by the choice of the body's axis [7]. 

3. OPERATORS FOR KINETIC ENERGY IN POLYATOMIC MOLECULES IN TERMS OF 
GEOMETRIC ALGEBRA 

We used geometric algebra to obtain a representation of the operator of the kinetic energy for an atomic 
molecule 𝑁, at least in principle, by directly expressing the operator of a gradient in terms of generalized 
coordinates or by components of operators of the quasi momentum such as the operator of the angular 
moment . 
 
For an atomic molecule 𝑁 the  expression of the operator of the kinetic energy 

Τd(4>?@) = −
ℎ"

8𝜋"
P

1
𝑚1

5

1

∇1
"  (37) 

Where 𝑚1 is the mass of the atom 𝛽.  the operator of kinetic energy reads as 

Τd = −
ℎ"

8𝜋"
PP

1
𝑚1

#5

Q

5

1

∇1 ⋅ 𝑒1
(I') 𝜕

𝜕𝑞Q
 (38) 

The Eq (38) may be written in a number of different ways, one of which is a ” contravariant metric 
tensor 𝑔(I&I')” such that the 𝑔(I&I') is giving in the form 

𝑔(I&I') =P
1
𝑚1

5

1

𝑒1
I' ⋅ 𝑒1

I&  (39) 

The official results of the classical tensor analysis show that [22] 
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P
1
𝑚1

5

1

∇1 ⋅ 𝑒1
RI'S 𝜕

𝜕𝑞Q
=

1
𝑧)! "⁄ P

𝜕
𝜕𝑞//

𝑧)! "⁄ 𝑔(I&I')
𝜕
𝜕𝑞Q

 (40) 

Where 𝑧 = 𝑑𝑒𝑡	𝑔(I&I') is the contravariant metric tensor determinant.The operator  of the kinetic energy 
is as follows 

Τd(4>?@) = −
ℎ"

8𝜋"
P(
#5

/Q

𝜕
𝜕𝑞/

+
1

𝑧)! "⁄
𝜕𝑧)! "⁄

𝜕𝑞/
)	𝑔(I&I')

𝜕
𝜕𝑞Q

 (41) 

To be more specific, it is assumed that all integrations are done over the volume-element 𝑑𝜏 =
𝐽𝑑𝑞!𝑑𝑞"…,	where 𝐽 = o𝑑𝑒𝑡	𝑔(I&I')o

)! "⁄
= 𝑧)! "⁄  , where	𝐽 is called Jacobian. 

If the volume element 𝑑𝜏T = 𝑘𝑑𝑞!𝑑𝑞"…, is used instead of the volume element 𝑑𝜏 = 𝐽𝑑𝑞!𝑑𝑞"…, the 
corresponding operator of kinetic energy 𝑇�T is provided as [8]. 

𝑇�T
(4>?@) = 𝐽! "⁄ 𝑘)! "⁄ 𝑇� (4>?@)𝑘! "⁄ 𝐽)! "⁄  (42) 

The vibrational and rotational degrees of freedom are completely isolated from translation. 
If  we have the matrix [𝜔] with elements [𝜔]/Q = 𝑔(I&I')as follows: 

�𝜔
(/4P) 0
0U 𝜔(P'V4@)� (43) 

This Martic is split into a translational and internal block . 
The measurement vectors for the coordinates of cartesian of the center of mass can be written as 

𝑒1
(O&) = ∇1Χ/ =P∇1

5

:

𝑚:𝜐/ ⋅ Χ:
𝑀

=
𝑚:

𝑀
𝜐/  (44) 

The shape and rotational coordinates' translational invariance (abbreviated as 𝐵! = 𝜙, 𝐵" = 𝜃, and 𝐵# =
𝜒 for short),is   

∑ ∇1𝑞/ = 01     And    ∑ ∇1𝐵/ = 01  (45) 

When Eqs (43), (44)  and (45) are taken into account, The internal and translational parts can be 
combined to form the operator  of the kinetic energy. 

			Τ� (4>?@) = Τd(/4P) + Τd(P'V4W@) (46) 

The internal part 

Τd(/4P) = −
ℎ"

8𝜋"
P (
#5)#

/Q

𝜕
𝜕𝑞/

+
1

𝑧)! "⁄
𝜕𝑧)! "⁄

𝜕𝑞/
)	𝑔(I&I')

𝜕
𝜕𝑞Q

 (47) 

 
 
The translational part 

Τd(P'V4W@) = −
ℎ"

8𝜋"
P

𝜕"

𝜕Χ/"

#

/8!

 (48) 

It is common to represent the rotational portion of each gradient operator in the forms of the components 
of the fixed body  𝚤/̂ = 𝜐/+ ⋅ Ι� of the angular momentum operator Ι� , rather than the partial derivative 
operators X

XY&
 ,from the [9] we can see the relation 

X∇1𝜙Y
𝜕
𝜕𝜙

+ X∇1𝜃Y
𝜕
𝜕𝜃

+ X∇1𝜒Y
𝜕
𝜕𝜒

=P𝑒1
(Z&)

#

/

�̂�/  (49) 

The  measuring vectors  𝑒1
(Z() are obtained as 

	𝑒1
(Z() = ∇V�(𝑎 ⋅ ∇1𝜐/+) ⋅ 𝜐Q+� (50) 
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Where 	𝑒1
(Z()related to the nucleus 𝛽	and the 	𝑘th part of the angular momentum operator	Ι� .The kinetic 

energy operator's internal component in Eq (47) can be written succinctly as 

Τd(/4P) = −
ℎ"

8𝜋"
P Γ�/

A
#K)#

/Q

𝑔(I&I')Γ�Q  (51) 

The Γ�Q refers to component of the body-frame 	[̂&
ℏ
  of the overall angular momentum operator for degrees 

of  rotational freedom (𝑖 = 1, 2, 3) and partial derivative operator for shape coordinates X
XI&)#

 for degrees 
of vibrational freedom 𝑖 = 4,5, …3𝑁 − 3. 
The Γ/

A	is called ”adjoint” and is  the same as Γ�Q for degrees of rotational freedom and it is  X
XI&)#

+

𝑧+
$
!
X^%

$
!

XI&)#
  for the shape coordinates (𝑖 = 4,5, …3𝑁 − 3), where (𝑧+ = 𝑑𝑒𝑡	𝑔(/Q)) is the determinant of 

the contravariant metric tensor [10]. 
The contravariant metric tensor 𝑔(/Q) or  𝑔RI&I'S with elements of vibrational is  

𝑔(/Q) = ∑ !
_"

K
1 𝑒1

(I&)#) ⋅ 𝑒1
(I')#)                for (𝑖, 𝑗 = 4,5, … ,3𝑁 − 3) (52a) 

𝑔RI&I'S = ∑ !
_"

K
1 𝑒1

(I&) ⋅ 𝑒1
RI'S = ∑ !

_"

K
1 (∇1𝑞/) ⋅ (∇1𝑞Q)    for (𝑖, 𝑗 = 1,2, … ,3𝑁 − 6)  (52b) 

The contravariant metric tensor 𝑔(/Q) or 𝑔RZ'I&S   with Elements of Coriolis are  
𝑔(,`) = ∑ !

a*

b
2 e2

(I&)#) ⋅ e2
(c+)    for (𝑖 = 4,5, … ,3𝑁 − 3)   and 𝑗 = (1,2,3)              (53a) 

	𝑔RZ'I&S = ∑ !
_"

K
1 𝑒1

(Z') ⋅ 𝛻1𝑞/ 		  for (i = 1,2, … ,3N − 6)     and 𝑗 = (1,2,3)                (53b) 

The contravariant metric tensor 𝑔(/Q)	or 𝑔RZ&Z'S	with the elements of rotational is 
𝑔(/Q) = 𝑔RZ&Z'S 	= ∑ !

_"

K
1 𝑒1

(Z&) ⋅ 𝑒1
(Z')       for  𝑖, 𝑗 = (1,2,3) (54) 

The Euler angles' gradients are applied to the measurement vectors of rotational 𝑒1
(Z&)as follows: 

𝛻1𝐵Q =	𝑒1
(Y') = ∑ 𝑒1

(Z&)#
/8! 𝛢/Q)!   (55) 

Α/Q)! is the element of the matrix's inverse as 	Α/Q)! = [Α]/Q)!, that's the matrix is [Α]/Q = 𝑛/ ⋅ 𝜐Q+ ,	𝑛/ is the 

vectors of nodal lines (n! = υ#, n" =
d#×d#%

fd#×d#% f
= d#×d#%

g,h -
	and	n# = υ#+ ). 

 
 
 
The matrix [Α] is 

[𝛢] = ¤
𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜒 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜒 𝑐𝑜𝑠 𝜃
𝑐𝑜𝑠 𝜒 −𝑠𝑖𝑛 𝜒 0
0 0 1

¦ (56a) 

The inverse of the matrix [Α])! is 

[𝛢])! =

⎣
⎢
⎢
⎢
⎡
𝑠𝑖𝑛 𝜒
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜒 −

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜒
𝑠𝑖𝑛 𝜃

𝑐𝑜𝑠 𝜒
𝑠𝑖𝑛 𝜃

−𝑠𝑖𝑛 𝜒 −
𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜒
𝑠𝑖𝑛 𝜃

0 0 1 ⎦
⎥
⎥
⎥
⎤
 (56b) 

As a result, It is possible to write 

𝑔(Y'Y,) =P
1
𝑚1

K

1

𝑒1
(Y') ⋅ 𝑒1

(Y,) =PP
1
𝑚1

𝑒1
(Z&) ⋅ 𝑒1

(Z()
K

1

#

/T

𝛢/Q)!𝛢T@)! =P𝑔(Z&Z()
#

/T

𝛢/Q)!𝛢T@)! (57) 
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𝑔(Y'I,) =P
1
𝑚1

K

1

𝑒1
(Y') ⋅ 𝑒1

(I,) =PP
1
𝑚1

𝑒1
(Z&) ⋅ 𝑒1

(I,)
K

1

#

/T

𝛢/Q)! =P𝑔(Z&I,)
#

/

𝛢/Q)! (58) 

Where 𝑞@ 	is a coordinate for a shape. 
Since the determinant of [Α])!is 𝑑𝑒𝑡[𝛢])! = )!

W/4 E
 , the determinants of the two contravariant metric 

tensor 𝑑𝑒𝑡𝑔(I&I') = 𝑧 and 𝑑𝑒𝑡𝑔(/Q) = 𝑧+ are related as follows 

𝑧+ = (sin 𝜃)"𝑧 (59) 

(where	𝑞#K)L,	𝑞#K)M, and 𝑞#K)# indicate to the Euler angles(	𝜙	, 𝜃, 𝜒)	respectively, and 𝑞#K)", 𝑞#K)!, 
and 𝑞#K indicate to the center of mass coordinates (Χ!, Χ", Χ#) respectively). 

4. LAGRANGIAN FORMULATION AND COVARIANT MEASURING VECTORS 

The component of kinetic energy for the classical Lagrangian L = T − V is expressed in the form of 
generalized velocities	𝑞/∙ , as for conservative systems (given to time-independent or no limitations at all) 
[11]. 

𝑇 =
1
2
P𝑞/∙ 	𝑔I&I'𝑞/

∙
T

/Q

 (60) 

Where 𝑘 is the number of active coordinates and 𝑔I&I' is the covariant metric tensor can be determined 
by 

	𝑔I&I' =P𝑚1𝑒I&
(1) ⋅ 𝑒I'

(1)
K

1

 (61) 

Where 𝑒I&
(1) The covariant measuring vectors which can be determined by the following equation 

	𝑒I&
(1) =

𝜕𝑥1
𝜕𝑞/

 (62) 

It is essential to develop the ability to relate the characteristics of covariant measurement vectors to those 
of contravariant measurement vectors. In the following, we will only analyze the unconstrained state 
wherein the number of available coordinates is	𝑘	 = 	3𝑁. 
First, if 	𝑡 = 	 𝑞Q is used in equation (35), the result is 

𝜕𝑞/
𝜕𝑞Q 	

=P𝑒1
(I&)

5

1

⋅
𝜕Χ1
𝜕𝑞Q

=P
𝜕Χ1
𝜕𝑞Q

⋅ ∇1𝑞/ = 𝛿/Q

K

1

 (63) 

Where   𝛿/Q = °1											if		𝑖	 = 	𝑗	
0											if		𝑖	 ≠ 	𝑗  

As a result, the constraint between covariant and contravariant measurements vectors is determined as 
follow 

P𝑒I&
(1)

K

1

⋅ 𝑒1
(I') = 𝛿/Q  (64) 

Second, by utilizing the representation of ∇1in equation (33), it is demonstrated that 

∇1(	𝐴'̅Χ:) = 𝛿:1P𝑒1
(I&)

#5

/

𝐴'̅
𝜕Χ:
𝜕𝑞/

= 𝛿:1P𝑒1
(I&)

#5

/

𝐴'̅𝑒I&
(:) (65) 

Where 𝐴'̅ is an 𝑟-blade that isn't affected by Χ:, with 𝑟	 = 	0, 1, 2, 3. From the geometric product 
(	𝐴'̅Χ:)	is give as 

(	𝐴'̅Χ:) = (−1)'6!𝐴'̅ ⋅ Χ: + (−1)'𝐴'̅ ∧ Χ: (66) 

And 

∇1Χ: ⋅ 𝐴'̅ = 𝛿:1𝑟𝐴'̅  (67) 
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∇1Χ: ∧ 𝐴'̅ = 𝛿:1(3 − 𝑟)𝐴'̅ (68) 

By substituting the equations  (68), (69) into (66) , yeilds  

P𝑒1
(I&)

#5

/

𝐴'̅𝑒I&
(:) = 𝛿:1(−1)'(3 − 2𝑟)𝐴'̅  (69) 

Where there are a number of special cases can be obtained  from equation  (68), by setting 𝐴'̅ = 1	(so 
𝑟 = 0) the identity  

P𝑒1
(I&)

#5

/

𝑒I&
(:) = 3𝛿:1  (70) 

By changing the Eq (69) into a combination of inner and outer components 

P𝑒1
(I&) ⋅

#5

/

𝑒I&
(:) = 3𝛿:1  (71) 

P𝑒1
(I&) ×

#5

/

𝑒I&
(:) = 0 

(72) 

Moreover, if the inner products are explained by means of geometric products and Eq (70) is applied, it 
is easy to show that  

P𝑔(I&I()𝑔(I(I') = 𝛿/Q

#K

T

 (73) 

Eq (73)  is the relation between the covariant metric tensor and contravariant metric tensor by means of 
geometric products. 

5. RESULTS AND CONCLUSIONS 

Clifford's and many others' objective was to make geometric algebra helpful in many branches of 
science. Because the algebra applied may provide for unexpected solutions to some problems. In this 
regard, David Hestenes' efforts to make geometric algebra a science language beyond algebra in Physics 
should be mentioned. 

This study demonstrates that a general and practical method for obtaining rotational measuring vectors 
´𝑒1

(Z()µ using geometrical algebra has been developed, which gives its internal products with other 
rotational measuring vectors and with gradients coordinates for vibration, the operator of the kinetic 
energy of vibration and rotational of polyatomic particles. 

The conclusions of this study will allow us to write the energy expressions of polyatomic molecules 
much more compactly using Clifford Algebra, which will simplify our computations. 

Clifford's Algebra enables us to better grasp nature and its realities. We can harness the power of 
mathematics for physics by employing this algebra. While Clifford Algebra is useful in robotics and 
dynamical systems, we now know that it also holds true in the enigmatic world of quantum physics. 
Everything may be understood in terms of the movements of polyatomic molecules if operators exist. 
We can make sense of the outcomes of applying mathematics to physics by employing operators.  
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