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ABSTRACT 

In this document, after defining biquaternions algebra, Poynting Theorem is derived in this algebra. 
Because of 8-component biquaternions containing 3-dimensional vector space and 4-dimensional quaternion 
space, we can examine many physical quantities in biquaternion algebra. Based on this information, the 
generalized field Maxwell Equations and Gauge Transformations is showed in non-comutative but associative 
biquaternion algebra in homogenous media. Then, Noether and Poynting Theorems are introduced in terms of 
biquaternionic differential operator equation and used for deriving equations in electromagnetic energy 
conservation. In conclusion, it is seen that these biquaternionic equations can be derived from generalized 3-
dimensional vector space in literature before. 
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INTRODUCTION 

 With the discovery of quaternions by William Hamilton in 1843, studies on complex numbers 
began to increase. Quaternions are a hyper-complex number system for studying 4-dimensional 
spacetime. [1] In the years when the quaternion algebra was discovered, British mathematicians such as 
A. Carley, K. Clifford and J. J. Slyvester used quaternions as well as physicists such as J. C. Maxwell 
and P. G. Tait, who built the electromagnetic theory continued their studies on electromagnetic issues 
by using quaternions. [2] Physicists adopted the use of vector and tensor algebra in the early 20th 
century. Until the middle of the 20th century, the practical use of quaternions was minimal compared to 
other methods. However, this situation has changed rapidly as progress has been made in these areas 
with the increasing use of quaternions in robotics, animation and computer technology. [3] 

On the other hand biquaternions are the 8-dimensional form of quaternions. Its applications in 
physics are also taking place at an increasing rate in recent years. Gürlebeck and Wolfgang applied 
biquaternions to special theory of relativity, particle mechanics and electromagnetism and showed that 
biquaternions have a wide range of applications. [4] 

Poynting's theorem includes an expression of energy density representing the dissipation of 
energy for time-varying electric and magnetic fields. It also says that the reduction in energy stored in 
the fields due to the work done on the charges by the electromagnetic force, minus the energy flowing 
out from the surface. Poynting's theorem is also  identified in the literature as the work-energy theorem. 
[5] 

In this paper, the history and algebra of quaternions and biquaternions are included. Then, 
Maxwell's equations, which are also valid for biquaternions, are obtained, and Poynting's theorem is 
defined for biquaternions. 

QUATERNION ALGEBRA 
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A quaternion α is defined as a complex number: 

 α = 𝑎! + 𝑎"i + 𝑎#j + 𝑎$k         (2.1) 

formed from 4 different units (1, i, j, k) by means of the real parameters 𝑎% (i =0, 1, 2, 3), where i, j, k 
are 3-orthogonal unit elements. With ideas from both vector and matrix algebra, the quaternion α may 
be viewed as a linear combination of scalar and base element 𝑎! and a vector �⃗�: 

 α = 𝑎! + �⃗�.           (2.2) 

If 𝑎! = 0 is a real number and is called a scalar quaternion; when �⃗� = 0$⃗  is a purely imaginary number 
and is called a vector quaternion. As we can observe, quaternions includes scalars and unit elements, 
and they are in the subspace of quaternions. 

 The conjugate of a quaternion α, denoted by 𝛂∗, is defined by negating its vector part (or 
imaginary part); that is 

 𝛂∗ = 𝑎! - �⃗�.           (2.3) 

 It is convenient to represent, quaternions and their algebra in matrix form to simplfy equation 
manipulations. The matrix (column vector) representation of an arbitrary quaternion α with respect to 
the basis (1, i, j, k) is merely the collection of its parameters: 

 α = [𝑎!, 𝑎", 𝑎#, 𝑎$]	' = [𝑎!, 𝛂']	'        (2.4) 

where superscript T indicates the transpose of a matrix. 

 Since scalars and spatial vectors are in the subspace of quaternions, the rules in scalar and vector 
algebra alsa apply to quaternions. Let us consider the following three quaternions: 

α = 𝑎! + �⃗�, β = 𝑏! + 𝑏$⃗ , γ = 𝑐! + 𝑐. 

Addition and subtraction, ±, of two quaternions α and β are defined as 

 α ± β = (𝑎! + 𝑏!) + (�⃗� ± 𝑏$⃗ ).         (2.5) 

The quaternion addition and subtraction obey associative and commutative laws. 

 Quaternion multiplication, designated by ×, is defined as 

 α × β = (𝑎! + �⃗�) × (𝑏! + 𝑏$⃗ ) 

          =  𝑎! × 𝑏! + 𝑎! × 𝑏$⃗  + 𝑏! × �⃗� + �⃗� × 𝑏$⃗              (2.6) 

 

Where the scalar-scalar and scalar-vector quaternion products are defined, respectively, the same way 
as scalars and spatial vectors; thus 𝑎! ×× 𝑏!  = 𝑎!𝑏!, 𝑎! × 𝑏$⃗  = 𝑎!𝑏$⃗ . The vector-vector quaternion 
product is defined as: 

 �⃗� × 𝑏$⃗  = - �⃗� . 𝑏$⃗  + �⃗� × 𝑏$⃗         (2.7) 
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Where the operations “.” and “×” define the dot product and the cross product in the space of unit 
elements. 

 The norm of a quaternion α, denoted by N(α), is a scalar quaternion and is defined as N(α) = 
𝛂	∗ × α = α × 𝛂	∗ = 𝑎!# + 𝑎"# + 𝑎## + 𝑎$#. 

 Unlike unit elements, the set of quaternions form a division algebra, since for each non-zero 
quaternion α there is an inverse 𝛂(" such that α × 𝛂("= 𝛂(" × α = 1. Consider two non-zero quaternions 
α and β = 𝛂∗

*	(𝛂)
 Since α × β = 𝛂	×	𝛂

∗

*	(𝛂)
 = 1, we find the inverse of α to be [6] 

 𝛂(" = 𝛂∗

*	(𝛂)
           (2.8) 

BIQUATERNIONS (COMPLEX QUATERNIONS) 

Everything that can be measured in physics must be real. For this reason, real numbers have found 
a field of application in every field since the early of science. On the other hand, it is also known that 
complex numbers are used in mechanical and electrical applications, especially in circuit analysis. 
Unfortunately this number system only adds 2 dimensions to applications. In 3D applications, vectors 
are used, but vectors seem to be insufficient in some applications.  

Firstly, we can think of real numbers as hyper-complex numbers that are 1-dimensional under any 
sum, product or any complex number in 2D. We can treat the real numbers as a subset of the complex 
numbers whose imaginary part is zero. Hamilton discovered the new number system, quaternions, by 
using complex numbers in 4-dimensional space. In the algebra of quaternions, the combination of two 
complex numbers is considered, thus a number system is obtained which is expanded in one real and 3 
imaginary dimensions. [7] 

Based on this result, he focused on the triple number system.  Quaternion subsumes vector and a 
real component so we can see that a quaternion has 4-dimension. As in vector space, addition and 
multiplication operations can be defined in quaternions, but a different method has been developed for 
division. Quaternions is an algebra that can be expressed in different dimensions, which are complex, 
divisional and dual. [8] 

Biquaternions are complex quaternions, so they have 8-dimensions. [9] We can extend the 
applications in Physics such as quantum mechanics, robotics, electromagnetism, etc. by using 
Biquaternions. 

 

A - Biquaternion Algebra 

 A biquaternion Q is defined as a complex number and 𝑄/ = 𝑎/ + i 𝑏/ (m = 0, 1, 2, 3) and 𝑖# 
= -1, so  

Q = 𝑄! �̂�! + 𝑄" �̂�" + 𝑄# �̂�# + 𝑄$ �̂�$        (3.1) 

formed from four different units (�̂�!, �̂�", �̂�#, �̂�$) by means of the real parameters �̂�!  = 1 and  �̂�% (i = 1, 
2, 3), where �̂�", �̂�#, �̂�$ are three orthogonal unit elements and �̂�%# = -1.  Here the orthogonal units obey 
the product of �̂�%�̂�0 = - δ	%0 �̂�!  + ε%01 �̂�1 rule. With ideas from both vector and matrix algebra, the 
biquaternion Q may be viewed as a linear combination of a scalar 𝑄! and a spatial vector 𝑄$⃗  because of 
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Q = (𝑎! + i𝑏!)	�̂�! + (𝑎" + i𝑏")	�̂�" + (𝑎# + i𝑏#)	�̂�# + (𝑎$ + i𝑏$)	�̂�$ = (𝑎! + i𝑏!, 𝑎" + i𝑏", 𝑎# + i𝑏#, 𝑎$ + 
i𝑏$) = (𝑎! + i𝑏!, �⃗� + i𝑏$⃗ ). Thus,  

Q = 𝑄! + 𝑄$⃗             (3.2) 

If 𝑄! = 0, Q is a purely imaginary number and is called vector biquaternion; when 𝑄$⃗  = 0$⃗ , Q is a real 
number and is called a scalar biquaternion.  

 Scalar unit element according to the multiplication in biquaternıon algebra is: 

1Q = Q1 = Q            (3.3) 

Because of �̂�! = 1. 

For two biquaternions such as P and Q, to be equal, their opposite elements must be equal. If P 
and Q are equal biquaternions, then it must be as: 

 P = 𝑃! �̂�! + 𝑃" �̂�" + 𝑃# �̂�# + 𝑃$ �̂�$ 

 Q = 𝑄! �̂�! + 𝑄" �̂�" + 𝑄# �̂�# + 𝑄$ �̂�$ 

𝑃! = 𝑄!, 𝑃" = 𝑄", 𝑃# = 𝑄#, 𝑃$ = 𝑄$      (3.4) 

The sum or subtraction of two biquaternions is a biquaternion consisting of the sum or 
subtraction of the opposite elements of these two biquaternions: 

P + Q = (𝑃! ± 𝑄!) �̂�! + (𝑃" ± 𝑄") �̂�" + (𝑃# ± 𝑄#) �̂�# + (𝑃$ ± 𝑄$) �̂�$    (3.5) 

 The multiplication of two biquaternions is: 

PQ = (𝑃! �̂�! + 𝑃" �̂�" + 𝑃# �̂�# + 𝑃$ �̂�$)(	𝑄! �̂�! + 𝑄" �̂�" + 𝑄# �̂�# + 𝑄$ �̂�$) 

= 𝑃! �̂�!𝑄! �̂�! + 𝑃! �̂�!𝑄" �̂�" + 𝑃! �̂�!𝑄# �̂�# + 𝑃! �̂�!𝑄$ �̂�$  

+ 𝑃" �̂�"𝑄! �̂�! + 𝑃" �̂�"𝑄" �̂�" + 𝑃" �̂�"𝑄# �̂�# + 𝑃" �̂�"𝑄$ �̂�$ 

+ 𝑃# �̂�#𝑄! �̂�! + 𝑃# �̂�#𝑄" �̂�" + 𝑃# �̂�#𝑄# �̂�# + 𝑃# �̂�#𝑄$ �̂�$ 

+ 𝑃$ �̂�$ 𝑄! �̂�! + 𝑃$ �̂�$ 𝑄" �̂�" + 𝑃$ �̂�$ 𝑄# �̂�# + 𝑃$ �̂�$𝑄$ �̂�$ 

= 𝑃!𝑄! + 𝑃!𝑄"�̂�" + 𝑃!𝑄#�̂�# + 𝑃!𝑄$�̂�$ 

+ 𝑃"𝑄!�̂�" + (−	𝑃"𝑄") +  𝑃"𝑄#�̂�$ + (−	𝑃"𝑄$�̂�#)  

+ 𝑃#𝑄!�̂�# + (−	𝑃#𝑄"�̂�$) +  (	−	𝑃#𝑄#) + 𝑃#𝑄$�̂�"  

+ 	𝑃$𝑄!�̂�$ + 𝑃$𝑄"�̂�# + (	−	𝑃$𝑄#�̂�") + (	−	𝑃$𝑄$) 

 = (𝑃!𝑄! −	𝑃"𝑄" −	𝑃#𝑄# 	−	𝑃$𝑄$) 

 + (𝑃!𝑄" + 𝑃"𝑄! + 𝑃#𝑄$ −	𝑃$𝑄#) �̂�" 

 + (𝑃!𝑄# −	𝑃"𝑄$ + 𝑃#𝑄! + 𝑃$𝑄") �̂�#  
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 + (𝑃!𝑄$ + 𝑃"𝑄#  −	𝑃#𝑄" + 𝑃$𝑄!) �̂�$ 

and this shows us that this equation is also equals to: 

 = 𝑃!𝑄! −	𝑷$$⃗ 	 · 𝑸$$⃗  + 𝑃!𝑸$$⃗  + 𝑷$$⃗ 𝑄! + i𝑷$$⃗  ×  𝑸$$⃗        (3.6) 

Because 

PQ = (𝑃! �̂�! + 𝑃" �̂�" + 𝑃# �̂�# + 𝑃$ �̂�$)(	𝑄! �̂�! + 𝑄" �̂�" + 𝑄# �̂�# + 𝑄$ �̂�$) 

= (𝑃! �̂�!𝑄! �̂�! + 𝑃! �̂�!𝑄" �̂�" + 𝑃! �̂�! 𝑄# �̂�# + 𝑃! �̂�!𝑄$ �̂�$) 

+ (𝑃" �̂�"𝑄! �̂�! + 𝑃"	�̂�"𝑄" �̂�" + 𝑃" �̂�" 𝑄# �̂�# + 𝑃" �̂�"𝑄$ �̂�$) 

+ (𝑃#	�̂�#	𝑄! �̂�! + 𝑃#	�̂�#	𝑄" �̂�" + 𝑃# �̂�#  𝑄# �̂�# + 𝑃#	�̂�#	𝑄$ �̂�$) 

+ (𝑃$ �̂�$	𝑄! �̂�! + 𝑃$	�̂�$	𝑄" �̂�" + 𝑃$ �̂�$  𝑄# �̂�# + 𝑃$ �̂�$	𝑄$ �̂�$) 

= (𝑃!𝑄! + 𝑃!𝑄" �̂�" + 𝑃!𝑄# �̂�# + 𝑃!𝑄$ �̂�$) 

+ (𝑃"𝑄!�̂�" - 𝑃"𝑄" + 𝑃"𝑄# - 𝑃"𝑄$) 

+ (𝑃#𝑄!�̂�# - 𝑃#𝑄" - 𝑃#𝑄# + 𝑃#𝑄$) 

+ (𝑃$𝑄!�̂�$ + 𝑃$𝑄" -  𝑃$𝑄# - 𝑃$𝑄$) 

= 𝑃!𝑄! - 𝑷$$⃗ .𝑸$$⃗  + 𝑃!𝑸$$⃗  + 𝑷$$⃗ 𝑄! + i 𝑷$$⃗ × 𝑸$$⃗        

  

 We can define conjugate of a biquaternion in two ways. The first one is: 

𝑄: = 𝑄! �̂�! - 𝑄" �̂�" - 𝑄# �̂�# - 𝑄$ �̂�$ = [𝑄!, - 𝑸$$⃗ ]      (3.7) 

If we show the biquaternion Q as: 

Q = (𝑎! + i𝑏!)	�̂�! + (𝑎" + i𝑏")	�̂�" + (𝑎# + i𝑏#)	�̂�# + (𝑎$ + i𝑏$)	�̂�$ 

so the conjugate of Q is: 

𝑄:  = (𝑎! + i𝑏!)	�̂�! - (𝑎" + i𝑏")	�̂�" - (𝑎# + i𝑏#)	�̂�# - (𝑎$ + i𝑏$)	�̂�$. 

The second conjugation of a biquaternion is getting congugating of all complex coefficient of 
biquaternion, like: 

𝑄∗= 𝑄!∗�̂�! - 𝑄"∗ �̂�" - 𝑄#∗ �̂�# - 𝑄$∗ �̂�$        (3.8) 

So all the parts are: 

𝑄!∗= 𝑎! - i𝑏! 

𝑄"∗= 𝑎" - i𝑏" 

𝑄#∗= 𝑎# - i𝑏# 
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𝑄$∗=	𝑎$ - i𝑏$ 

 If P and Q are two biquaternions, their multiplication is: 

(𝑃𝑄::::) = 𝑄𝑃::::           (3.9) 

And their multiplication’s conjugation is: 

(𝑃𝑄)∗ = 𝑄∗𝑃∗                    (3.10) 

 If Q is a biquatenion, its norm is the multiplication of itself and its conjugate, like: 

N(Q) = Q𝑄:  = 𝑄:Q = 𝑄!# + 𝑄"# + 𝑄## + 𝑄$#                (3.11) 

 If the norm of a biquaternion Q doesn’t equal to zero, N(Q) ≠ 0, Q can have its inverse, like: 

N(Q) = Q𝑄:  = 𝑄:Q 

Q = *(2)
23

  

So the inverse of Q is: 

𝑄(" = 23

*(2)
                         (3.12) 

The multiplication of biquaternion and its intervers equal to one. 

Q𝑄(" = 𝑄("Q = 1                    (3.13) 

 The division of two biquaternions P and Q means multiplication of P and 𝑄(". However 
multiplication of two biquaternions has no interchange speciality, so therte are two kinds of division of 
biquaternions [10] : 

4
2

 = ;
𝑄("𝑃 = 23

*(2)
	𝑃

𝑃𝑄(" = 𝑃 23

*(2)

=                  (3.14) 

 

ELECTROMAGNETIC ENERGY CONSERVATION BY BIQUATERNIONS IN 
HOMOGENOUS MEDIA 

In physics, magnetic charges are generally referred to as particles with zero electrical charges 
and one magnetic pole, so magnetic monopoles can be expressed in accordance with Maxwell's 
equations for magnetic charges in an isolated medium for quantized electric charges. In homogenous 
media Maxwell equations are: 

𝛁.𝐃 = 𝜌5 

𝛁. 𝐁 = 0 

𝛁 × 𝐄	= - 67
8⃗
6:
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𝛁 × 𝐇	= - 6;
88⃗
6:

 - 𝐽5$$$⃗  

Considering the existence of magnetic monopoles, the symmetrical generalized Maxwell-Dirac 
differential equations in space with the SI unit system can be expressed in biquaternions as: 

𝛁.𝐃 = - ∇.>?∇.>	
33333

#
  

Here, we accepted c = ħ = 1. Now, we will find 𝛁.𝐃 for biquaternions: 

∇. D = ( 6
6@
�̂�" + 6

6@
�̂�# + 6

6@
�̂�$)(𝐷!�̂�! + 𝐷"�̂�" + 𝐷#�̂�# + 𝐷$�̂�$) 

= 6;"
6@
�̂�" - 6;#

6@
 + 6;$

6@
�̂�$ - 6;%

6@
�̂�# + 6;"

6A
�̂�# - 6;#

6A
�̂�$ - 6;$

6A
 + 6;%

6A
�̂�" + 6;"

6B
�̂�$ + 6;#

6B
�̂�# - 6;$

6B
�̂�" - 

6;%
6B

  

∇. D	:::::: = - 6;"
6@
�̂�" - 6;#

6@
 - 6;$

6@
�̂�$ + 6;%

6@
�̂�# - 6;"

6A
�̂�# + 6;#

6A
�̂�$ - 6;$

6A
 - 6;%

6A
�̂�" - 6;"

6B
�̂�$ - 6;#

6B
�̂�# + 6;$

6B
�̂�" - 

6;%
6B

 

∇. D + ∇. D	:::::: = -2 6;#
6@

 -2	6;$
6A

 -26;%
6B

 

𝛁.𝐃 = - 
(#	&'#&( 	(#	

&'$
&) 	(#

&'%
&*

#
 =  6;#

6@
 +	6;$

6A
 + 6;%

6B
 = 𝜌5      (4.1) 

 And we know 

𝛁. 𝐁 = 0           (4.2) 

 It is also same for E: 

𝛁 × 𝐄  = - ∇.C?∇.C	
33333

#%
 = - 67

8⃗
6:
𝑖         (4.3)

         

𝛁 × 𝐇	= - 6;
88⃗
6:
𝑖 - 𝐽5$$$⃗ 𝑖          (4.4) 

Here, 𝜌5 is electric charge density, 𝐽5$$$⃗  is current density, 𝐃 electric induction, 𝐄 electric field, 𝐁 is 
magnetic induction and 𝐇 is magnetic field. 

 Moreover, electric and magnetic fields are in gauge theory: 

E = -∇φD - EF
EG

 - ∇ × AH         (4.5) 

B = -∇φI - "
J$

EF+

EG
 + ∇ × A         (4.6) 

Here, φD and φI are electric and magnetic scaler potentials, A and AH are electric and magnetic vector 
potentials and 𝜗 = "

√LM
 is electromagnetic waves speed. Vector potentials for biquaternions are [11] [12] 

: 
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A = (φD, 𝜗A$$⃗ ) = φD�̂�! + (A"eN" + A#eN# + A$eN$)	𝜗 

AH= (𝜗φI, AH$$$⃗ ) = 𝜗φI�̂�! + (AH"eN" + AH#eN# + AH$eN$) 

We can show a biquaternion Ψ as: 

Ψ = E - i	𝜗B = (𝐸"�̂�" + 𝐸#�̂�# + 𝐸$�̂�$) - i	𝜗(𝐵"�̂�" + 𝐵#�̂�# + 𝐵$�̂�$) 

          = -∇φD - EF
EG

 - ∇ × AH - i	𝜗 (-∇φI - "
J$

EF+

EG
 + ∇ × A) 

POYNTING TEOREM 

 In this part of this presentation, we took up Poynting Teorem on electrical current form. In Gauss 
or CGS, Maxwell equations are: 

𝛁.𝐃 = 4𝜋𝜌5          (5.1) 

𝛁. 𝐁 = 0          (5.2) 

𝛁 × 𝐄	= - "
N
 67
8⃗
6:

          (5.3) 

𝛁 × 𝐇	= "
N
 6;
88⃗
6:

 -  OP
N

 𝐽5$$$⃗          (5.5) 

If it is accepted that c=1, then these equations become: 

𝛁. 𝐄 = 4𝜋𝜌5          (5.6) 

𝛁. 𝐁 = 0          (5.7) 

𝛁 × 𝐄	= - 67
8⃗
6:

          (5.8) 

𝛁 × 𝐇	=  6;
88⃗
6:

 -  4𝜋𝐽5$$$⃗          (5.9) 

If there is no electric charge density and current density, we can show them as: 

𝛁. 𝐄 = 0                    (5.10) 

𝛁. 𝐁 = 0                    (5.11) 

𝛁 × 𝐄	= - 67
8⃗
6:

                    (5.12) 

𝛁 × 𝐁	=  6;
88⃗
6:

                    (5.13) 

If we multiply (5.10) and (5.12) by B and (5.11) and (5.13) by E: 

𝐸$⃗ .(	𝛁 × 𝐁) + 𝐵$⃗ .(	𝛁 × 𝐄) + 𝐸$⃗ .	6Q
8⃗

6:
 + 𝐵$⃗ .	67

8⃗
6:

 = 0                (5.14) 
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 The directions of the electric and magnetic fields vectors perpendicular to each others are also 
perpendicular to the direction of the electromagnetic field waves. The direction of electromagnetic 
waves has also the direction of energy flux 𝑆’s direction.  

𝑆 = 𝐸$⃗  × 𝐵$⃗                     (5.15) 

If energy flux 𝑆 is also poynting vector and u is electromagnetic energy density: 

 

6R
6:

 = "
#
  6
6:

 (𝐸$⃗  + 𝐵$⃗ ) = "
#
  6
6:

 (𝐸$⃗ . 𝐸$⃗  + 𝐵$⃗ . 𝐵$⃗ ) = 𝛁. 𝐒               (5.16) 

We can show 𝛁.(	𝐴 × 𝐵$⃗ ) = 𝐵$⃗ .(	𝛁 × 𝐀) + 𝐴.(	𝛁 × 𝐁) for two biquaternions so (5.15) and (5.16) are 
rearranged: 

𝛁. 𝐒 = 𝛁.(	𝐸$⃗ × 𝐵$⃗ ) = 𝐵$⃗ .(	𝛁 × 𝐄) + 𝐸$⃗ .(	𝛁 × 𝐁) = 0 

6R
6:

 = 𝛁. 𝐒 = 0                    (5.17) 

This equation is named as “energy conservation equation” and also “Poynting Theorem”. [13] 

CONCLUSION 

In this study the Poynting Theorem and Electromagnetic Conservation are tried to be represented with 
biquaternion algebra. It was shown that the biquaternionic expressions are nearly same with vector 
algebra. Biquaternion algebra used in this study have extended to complex number system. 
Biquaternions are useful and effective mathematical structure for energy conservation. 
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